Copyright 2021 - Modelado en Ingenieria

Matemática Superior Aplicada

Información General

3er. Año de la Carrera de Ingeniería Química - UTN - FRRo

Profesor: Dr. Alejandro S. M. Santa Cruz (Esta dirección de correo electrónico está protegida contra spambots. Necesita activar JavaScript para visualizarla.)

JTP: Dr. Juan Ignacio Manassaldi

Aux 2da: Srta. Amalia Rueda

Apuntes de Clase y Material Didáctico

Tutoriales de Scilab

Tutoriales de MATLAB de la Escuela Superior de Ingenieros Industriales de la Universidad de Navarra

Uso de MATLAB

Unidades Temáticas

Unidad 1: La Ingeniería en el Siglo XXI: Objetivos. Logros recientes en Ingeniería y en Ciencias Tecnológicas. Grandes desafíos para el futuro. El cambiante entorno de la Ingeniería y de las Cs. Tecnológicas. Sistemas de cómputo: Computadora digital. Equipo de cómputo. Tipos de computadoras. Software para computadoras: Sistemas operativos, entornos Windows y McIntosh, procesadores de texto, hojas de cálculo, bases de datos, diseño asistido por computadora (CAD). Software para cálculo matemático: MATLAB, Octave, Scilab, Mathematica, MATHCAD, MAPLE, etc. Lenguajes informáticos. Ejecución de un programa en computadora. Ciclo de vida del software. Prototipos de software. Internet, correo electrónico y la World Wide Web. Estrategia para la resolución de problemas en ingeniería utilizando software para cálculo . Operaciones con matrices y vectores. 

Remitirse a la Bibliografía: Solución de Problemas de Ingeniería con MATLAB - Delores M. Etter

Unidad 2: Introducción a los métodos numéricos. Series de Taylor. Los números en las computadoras. Bases de representación de los números. Rango de las constantes numéricas. Números en el hardware de la computadora. Errores numéricos: Errores de redondeo y errores de truncamiento. Overflow, underflow y problemas mal condicionados.Metodología para resolver problemas en ingeniería

Unidad 3: Sistemas de ecuaciones lineales: Existencia y unicidad de la solución. Métodos directos de resolución: Eliminación de Gauss y Gauss - Jordan. Métodos especiales para la resolución de sistemas de ecuaciones con matrices ralas. Método de Thomas para la resolución de matrices tridiagonales en bloque. Aplicación a procesos de separación múltiple etapa. Descomposición LU y PLU. Análisis de la condición del sistema: Números de condición, normas y errores. Métodos iterativos de resolución: Método de Jacobi, Gauss – Seidel.

Unidad 4: Regresión lineal: Planteo del problema. Mínimos cuadrados. Ecuaciones normales. Factorización QR. Matrices degeneradas. Descomposición en valores singulares.

Unidad 5: Resolución numérica de ecuaciones no - lineales de una variable. Métodos básicos. Discusión de la convergencia. Orden de convergencia del método. Resolución numérica de ecuaciones no - lineales de una variable: a) Método de sustitución directa o de aproximaciones sucesivas. Aceleradores de la convergencia: Método de Wegstein. b) Métodos de linealización: Método de Newton – Raphson, método de Newton Raphson de 2do. Orden, método modificado de Newton – Raphson, método de Von Mises o de las cuerdas paralelas, método de la secante, Regula Falsi y métodos relacionados. Resolución numérica de sistemas de ecuaciones no lineales: a) Métodos de aproximaciones sucesivas. Aceleradores de convergencia: Método de Wegstein.  b) Métodos de linealización: Método de Newton – Raphson, métodos cuasi-Newton. Aplicaciones a problemas típicos de Ingeniería Química.

Unidad 6: Optimización unidimensional: Métodos de Newton, interpolación parabólica sucesiva y de la búsqueda dorada (Fibonacci). Optimización multidimensional: Método de la pendiente más pronunciada. Método de Newton. Modificación del método de Newton. Método Simplex. Aplicaciones a problemas típicos de Ingeniería Química.

Unidad 7: Cuadratura numérica: Regla del trapezoide, regla de Simpson. Cuadratura Gaussiana. Estimación del error. Cuadratura adaptativa. Cuadratura multidimensional y mapping. Aplicaciones a problemas típicos de Ingeniería Química.

Unidad 8: Aproximación a la solución de ecuaciones diferenciales ordinarias. Definiciones. Solución de una ecuación diferencial. Problemas de condiciones de contorno y de valores iniciales. Algoritmos numéricos para resolver EDO’s con condiciones iniciales: Aproximación de una EDO mediante expansión en series de Taylor. Algoritmos numéricos para resolver EDO’s con condiciones iniciales: Métodos explícitos de resolución de EDO’s: Método de Euler, métodos Runge – Kutta. Métodos predictores correctores: Método de Euler-Gauss. Métodos implícitos de integración. Estabilidad numérica. Métodos de integración de orden superior. Aplicaciones a problemas típicos de Ingeniería Química.

Práctica MSA 2020

2do Parcial 2020: 24/11/2020

Ejercitación Complementaria

 

Contacto: Esta dirección de correo electrónico está protegida contra spambots. Necesita activar JavaScript para visualizarla.

Horarios de Consulta durante cursado: Martes de 10 a 12 Hs - Sala de Informática del 3er piso. (excepto mesas de examen) contacto:

Sra. Amalia Rueda (Esta dirección de correo electrónico está protegida contra spambots. Necesita activar JavaScript para visualizarla.)

Consulta para examen final: Acordar un horario con el profesor Dr. Juan Ignacio Manassaldi (Esta dirección de correo electrónico está protegida contra spambots. Necesita activar JavaScript para visualizarla.)

Archivos para descarga

Guías de Ejercicios (Durante el año se definen los ejercicios obligatorios para la entrega) 

Introducción

Derivadas Numéricas

Sistemas de Ecuaciones Lineales

Regresión Lineal

Ecuaciones No Lineales

Optimización

Ecuaciones Diferenciales Ordinarias (EDOs)

Cuadratura Numérica

Más artículos...

  1. Bibliografía
f t g m