Fundamentos de Informática

Generación de gráficos técnicos usando Ms. Excel

Dra. Sonia Benz - Dra. Patricia Mores - Ing. Evagelina Delfratte

Objetivo: Uso de la planilla de cálculo. Representación gráfica de datos y funciones.

Indicaciones:

- Realizar todos los ejercicios en un mismo archivo.
- Nombrar cada hoja con el número de ejercicio.

1. Gráficas de funciones:

- a. Construir la gráfica de la gráfica de la función $f(x) = x^3 3x 1$ en el intervalo [-2,2] (salto de 0.25)
- b. Construir la gráfica de la función $g(x) = 1 4x^2$ en el intervalo de [-4,4] (salto de 0.5).
- c. Representar ambas funciones en la misma gráfica.
- d. Agregar nombres a los ejes y títulos a las gráficas.
- 2. A partir de los siguientes datos estadísticos generar:

Producción de Nitrato de Amonio							
	2003	2004	2005				
Enero	30000	29800	30000				
Febrero	32800	32000	31000				
Marzo	30000	31000	31000				
Abril	33500	32500	33000				
Mayo	28000	28500	28000				
Junio	32000	31000	32000				
Julio	35500	34000	35000				
Agosto	29600	32000	31500				
Septiembre	32000	31000	31500				
Octubre	32500	32000	31500				
Noviembre	31250	32000 32000					
Diciembre	32000	32500	32000				

- a. Un diagrama de columnas que represente la producción mensual del año 2004.
 - i. Título de la serie: "2004"
 - ii. Rótulos en el eje x: los meses del año
 - iii. Título del eje y: (tn/mes)
 - iv. Título del gráfico: Producción (tn/mes) año 2004
- Preparar un único diagrama de líneas mostrando la producción mensual para los tres años en estudio.
 - i. Título de las series: 2003, 2004 y 2005.
 - ii. Rótulos en el eje x: los meses del año.
 - iii. Título del eje y: (tn/mes)
 - iv. Título del gráfico: Producción de nitrato de amonio.
- 3. La relación entre la presión, volumen y temperatura para muchos gases puede ser aproximada por la ley de gas ideal a través de la siguiente relación: Pv = RT, donde P es la presión absoluta (at), v es el volumen molar (l/mol), R es la constante universal de los gases ideales (R=0.082054 l.at/mol K) y T es la temperatura absoluta ($^{\circ}$ K).
 - a. Construir una planilla de cálculo que represente las presiones en función de la temperatura absoluta para un rango de 293.15 K (20 °C) a 523.15 K (250 °C). La tabla deberá tener 4 columnas. Los valores de temperatura en la primera, la segunda, tercera y cuarta los valores de la presión para 5, 10 y 15 l/mol respectivamente.
 - i. Expresar los resultados con 4 decimales.
 - ii. Aplicar referencias relativas y absolutas en las fórmulas.

1	Α	В	С	D	
1					
2		R=	0.082054		
3					
4		Volúmenes molares (I/mol)			
5	T (K)	5	10	15	
6	293.15				
7	303.15				
8	313.15				
q	272 15				

 b. Graficar todos los datos en un gráfico de dispersión. Editar el gráfico de manera que sea legible y atractivo. Incluir una leyenda incluyendo los volúmenes molares asociados a cada curva.

- 4. Una reacción química se lleva a cabo en un reactor mezcla completa continuo. La concentración de la sustancia producida puede ser calculada como una función del tiempo usando la fórmula $C = a(1 e^{-bt})$, donde C es la concentración en moles/ litro y t es el tiempo en segundos.
 - a. Construir una tabla de concentración en función del tiempo para el caso en el que a=6 y b=0.3 (Incluir en celdas individuales los valores de a y b). Seleccionar un tiempo suficientemente grande para que la concentración final se aproxime al equilibrio. Comience en t=0 seg con intervalos de 10 seg.
 - b. Crear un gráfico de <u>dispersión</u> para la concentración en función del tiempo. Conectar los puntos de datos individuales con segmentos de líneas. Agregar un título apropiado y etiquetas a los ejes.
- 5. Se desea determinar la influencia de la temperatura en la presión parcial de CO_2 . Utilice la ecuación de Van Der Waals $\left(P+\frac{a}{v^2}\right)(v-b)=RT$, para determinar la presión de CO_2 a 273.15 K; 303.15 K y 323.15 K y volúmenes molares entre 0.1 a 1 l/mol. Las constantes de la ecuación de Van Der Waals son: 3.592 l²atm/mol² (a) y 0.04267 l/mol (b).

Se pide:

a. Crear la planilla de cálculo de la presión

1	А	В	С	D	Е	F			
1									
2			R=	0.082					
3			a=	3.592					
4			b=	0.04267					
5									
6		Te	emperatura (I						
7		273.15	303.15	323.15		303.15			
8	Vol. (I/mol)	Presiones (at)				Gas ideal			
9	0.1								
10	0.15								
11	0.2								

- b. Graficar en el entorno correspondiente a 0.1<V<1, ajustar la escala para que se muestren los valores entre los rangos 0<V<1 y 10<P<110.
- - i. Graficar ambas curvas en la misma gráfica.
 - ii. Nombre de las series: Gas ideal, Gas real.

- iii. Agregar el título "Desvío del comportamiento ideal (303.15 K)" y nombres a los ejes.
- 6. Calcular la velocidad de reacción (desaparición del reactivo A) dada por la la Ley de Arrhenius $(-r_A) = k_0 e^{-E/RT}$ donde $k0=1x10^7$ mol/s es el factor de frecuencia, E es la energía de activación (cal/mol) y R=1.98 cal/ mol°K es la constante de los gases ideales. Realice una tabla para temperaturas entre 303 K y 333 K con intervalos de 2 K y para energías de activación entre 9400 y 10000 cal/mol con intervalos de 300 cal/mol.
 - a. Graficar la velocidad de reacción en función de la temperatura para cada valor de energía de activación.
 - b. Dar formato al gráfico incluyendo título, nombre de ejes, leyendas, colores de líneas diferentes para cada curva.
 - c. Crear un gráfico similar al del punto anterior y cambiar las coordenadas cartesianas a logarítmicas en el eje de la velocidad de reacción. Dar formato a los ejes de manera que aparezcan las marcas de graduación secundarias en ambos ejes. Que observación puede hacer?