UNIVERSIDAD TECNOLÓGICA NACIONAL – FACULTAD REGIONAL ROSARIO

Integración IV

Trabajo práctico Nº 4: Estimación de propiedades termodinámicas y generación de curvas de equilibrio con HYSYS. Uso de Spreadsheets

Generación de tablas de propiedades y curvas de equilibrio L-V.

1. Manejo de la Utility: Property Table de HYSYS.

Ésta permite examinar tendencias de propiedades de la variable dependiente sobre un rango de variación de la variable independiente, en formato tabular y gráfico.

Se propone estimar la Capacidad calorífica molar y la Densidad del Benceno como función de la temperatura utilizando la herramienta "*Utilities*".

Sugerencia: Seleccionar el paquete termodinámico WILSON con modelo de vapor SRK (no ideal).

Condiciones de la corriente:

Componente: Benceno, Temperatura: 200 °F, Presión: 300 psia, Flujo Másico: 1000 lb/hr

> Benceno		
Worksheet Stream Name Conditions Properties Properties Pressure [bar] Composition Molar Flow [kgmole/h] K Value Std Ideal Liq Vol Flow [m3/h] User Variables Molar Enthalpy [kcal/kgmole] Notes Molar Entropy [kJ/kgmole-C] Cost Parameters Heat Flow [kcal/h] Vorksheet Attachments Delete Define from Other S	Benceno 0.0000 93.33 6.895 453.6 3.543e+004 40.16 1.413e+004 -61.54 6.407e+006 40.13	Benceno Composition Basis Mole Fractions Composition Controls Erase Normalize Cancel OK

Una vez especificadas las condiciones de la corriente, nos queda:

En primer lugar, se debe seleccionar: *Tools* \rightarrow *Utilities*. Dentro de la lista de utilidades disponibles seleccionar "Property Table" y hacer clic en el botón "*Add Utility*".

Nombramos como Capacidad calorifica molar a dicha tabla de propiedades.

Es necesario indicar la corriente objeto de simulación. Esto se realiza presionando el botón *Select Stream* \rightarrow *Benceno*.

Tools Window Help			
workbooks Ctrl+W	T Available Litilities		
-O [™] PFDs Ctrl+P	Available offitties		
Summarijes		Depressuring - Dynami	cs 🔨
I Utilities Ctrl+U		Derivative Utility	_
<u>R</u> eports Ctrl+R		Envelope Utility	
💋 Databook Ctrl+D		Hydrate Formation Utili	ty 👝
Eace Plates Ctrl+F		Master Phase Envelop	el
DCS		Parametric Utility	
		Production Allocation L	Jtil 🗏 🛛
Control Manager		Property Balance Utility	<u> </u>
Recycle Assistant		Property Lable	
Dupania Drafilina Taal		User Property	~
Dynamic Proniing Tool		Ju reissi	
Script Manager	⊻iew Utility	<u>A</u> dd Utility	
Macro Language Editor		L	
	<u>D</u> elete Utility		
Case Security			
Aspen Icarus 🔹 🕨			
Correlation Manager			
Case Collaboration	Select Process Stre	a n	X
T Droporty Table: Capacida	d calorifica molar		
п эторенту тарке, сарасная			ОК
Design <u>N</u> ame	apacidad calorifica molar		-Object Filter
Connections		Calcul Channel	• All
Dep. Prop		Select Stream	C Streams
NotesIndepender	nt Variables		C UnitOps
Variable 1	Temperature Variable 2	Pressure	C Logicals
Mode	Incremental Mode	Incremental	C Custom
Lower Bou	nd 1 100.0 C Lower Bound	100.0 kPa	Custom
Upper Bou	nd 200.0 C Upper Bound	200.0 kPa	
# of Incren	nents 10 # of Incremer	nts 10	Disconnect
			<u>U</u> ancel
Design Performance Dyna	mics		
	Requires a Stream		
Delete	Calculate	Ignored	

Especificar como Variable Independiente 1: Pressure y modo: State.

El "*Mode*" determina si se quiere declarar los valores actuales o usar un rango de valores dentro de los límites superior e inferior especificados.

👫 Property Table	: Capacio	lad calo	orifica molar			
Design Connections Dep. Prop Notes	Name Stream	Capacid Bencend dent Varia	lad calorifica molar o ables Pressure State alues 20.68 bar <empty></empty>	Variable Mode Lower B Upper B # of Incr	2 ound rements	lect Stream Temperature Incremental 10.00 C 204.4 C 10
Design Perform	iance <u>Dy</u>	namics				
Delete		UNKNOW	Calc <u>u</u> late			Ignored

Luego ingresar como State Value el valor de 300 psia.

Se puede ingresar mas de un valor para State values si se desea, obteniéndose curvas paramétricas.

A continuación fijar la Variable Independiente 2: Temperatura, *Mode* como incremental y luego fijar el Limite inferior (*Lower bound*) como 50 °F, el límite superior (*Uper Bound*) como 400 °F, y número de incrementos como 10.

Para especificar la Capacidad calorifica molar, hacer clic "*Dep. Prop*", y luego en "*Add*". Bajo la columna "*Variable*" de la ventana que se abre seleccionar "*Molar Heat capacity*" y hacer clic en "*OK*".

Del mismo modo, se agrega la propiedad "Molar Density".

Finalmente al hacer clic en el botón "*Calculate*", se efectúan los cálculos y la barra inferior se torna de color verde.

ቶ Property Table: Capacidad calorifica molar		
Design Dependent Properties Connections Dep. Prop Notes Image: Connection of the second secon	<u>E</u> dit	
Design Performance Dynamics Unknown Dependent Property Delete Calculate	Variable Navigator Variable Variable Specifics Mass Lower Heating `∧ Molar Density Molar Entropy Molar Entropy Molar Flow Molar Volume Molar Volume Molecular Weight Partial Pressure CO2 Phase Actual Gas Flc Phase Actual Volume Phase Comp Mass Fli Phase Comp Molar Fli Description Molar Heat Capacity	All/Single Single All Lancel <u>D</u> K

T Property Table:	Capacidad calorifica molar	
Design Connections Dep. Prop Notes	Dependent Properties Molar Heat Capacity Molar Density	Edit
Design Performa	ince Dynamics	,
	Calculate	
Delete	Calc <u>u</u> late	<u>∏</u> <u>I</u> gnored

IT Property Table	: Capacidad calorifica molar	
Design Connections Dep. Prop Notes	Dependent Properties Molar Heat Capacity Molar Density	<u>E</u> dit <u>A</u> dd <u>D</u> elete
Design Perform	hance Dynamics	
Delete	Calcylate	🗖 Ignored

En la pestaña "Performance", los resultados pueden visualizarse haciendo clic en "Table" o "Plot".

💐 probl2 - HYSYS 3.2 - [Property Table: Capacidad calorifica molar]							
👖 File Edit Simulation	Flowsheet Tool	s Window Hel;	p				- 8 ×
D 🛩 🖬 🕂 🖽	ា អ ឌ្រុំ 🗖	$\sim \sim$	1097 1097	🔺 🌺	E	nvironment: Case (Mode: Stead	Main) y State
Performance	Results		1]
Table	Pressure [bar]	l emperature [C]	Phases	Molar Heat Capacity [kJ/kgmole-C]	Molar Density [kgmole/m3]		
Plots	20.68	10.00	L	121.540	11.3901		
	20.68	29.44	L	127.504	11.1272		
	20.68	48.89	L	133.479	10.8587		
	20.68	68.33	L	139.506	10.5834		
	20.68	87.78	L	145.638	10.3000		
	20.68	107.2	L	151.948	10.0066		
	20.68	126.7	L	158.540	9.70079		
	20.68	146.1	L	165.562	9.37926		
	20.68	165.6	L	173.243	9.03721		
	20.68	160.0	L L	101.301	0.00/03		
	20.00	204.4	L	132.331	0.20015		
	J			1			
Design Performan	ce Dynamics						
				OK			
	ſ		1				
Delete		Calc <u>u</u> late					l <u>I</u> gnored
	Completed.						
							▲ ▼

T Property Table: Capacidad calorifica molar	
Performance Y Variable 1s Table Molar Heat Capacity 1s Molar Density X Variable X Variable	res t Independent Variable Pressure ariable id Independent Variable Temperature ⊻iew Plot
Design Performance Dynamics	
Delete	Ignored
Marco Property Plot: Capacidad calorifica 💶 🗖	
Working the second seco	Conjunction of the second seco

Las gráficas se pueden imprimir haciendo clic con el botón derecho del mouse sobre la gráfica \rightarrow *"Print Plot"*.

Para generar un reporte sobre la tabla de propiedades hacer un clic sobre el botón *Tools* \rightarrow *Reports*.

То	ols Window	Help		
. 0	<u>W</u> orkbooks PFDs	Ctrl+W Ctrl+P	Report Manager	
IT	Summar <u>i</u> es Utilities <u>R</u> eports	Ctrl+U Ctrl+R		Printing Dreate Printing Brint Folit Text to File
Ű,	Databook Eace Plates DCS	Ctrl+D Ctrl+F		Dejete Delimited
	Dynamics Ass Control Mana Recycle Assist	istant Ctrl+Y ger tant		Format/Layout Print <u>S</u> etup
	Dynamic <u>P</u> rofi Sn <u>a</u> pshot Mar <u>S</u> cript Manage <u>M</u> acro Langua	ling Tool nager er age Editor		
ß	<u>C</u> ase Security Ec <u>h</u> o ID	·		

Hacer clic en Create, y dar un nombre al reporte. Luego presionar el botón Insert datasheet.

🕺 Report Bu	ilder Re	porte Ejercicio 3			
Report <u>N</u> ame	Reparte eels		Si	ze: OPoges	Printing <u>Piint</u> Text to <u>File</u> Preview
[risert Data	sheet	Edit Datasheet	Eemove Datasheet	* *	Format/Layout Print Setup

Seleccionar la tabla de propiedades que se creó previamente y luego "Add" al reporte.

Select Datablocks for Datasheet	
Source for Datablocks Pick a Specific Object by Name Pick All Objects of a Given T. Elowsheets Objects Case (Main) Alimentacion C UnitO Logacidad calorifica molar C UnitO FeederBlock_Alimentacion C Utilitie ProductBlock_Alimentacion C Assay Other C usto	Available Datablocks Add Add Add Add Add Add Add A

Report Builder - Reporte	
Report Name Reporte Size: 1 Page	45
Report Datasheets	Printing
Capacidad calorifica molar (Property Table): Ind. Prop, Table, Properties	<u>Print</u> Text to <u>File</u> ✓ Delimited Pre <u>v</u> iew
Insert Datasheet Edit Datasheet <u>R</u> emove Datasheet 🔊 📎	Format/Layout Print <u>S</u> etup

Una vista preliminar del informe se puede observar presionando el botón "*Preview*" en la ventana "*Report Buider*":

Ŀ	0				Case Nane:	E SDocuments an	d Sellings		
3	HYPROTICH	cayay, Ai	ena		uni sei:	Riteración 1. au	สาง		
÷	LIPSBORNE BURFATTER	CALADA			Date/Time :	Dan Jul 29 10:05	012007		
-									
1	Stream: A	limentad	ion		Ρ	roperty Ta	ole: C	apacidad ca	alorifica molar
9 10				IND	EPEN DENT VAR AS	BL EC			
11	warable 1: Messure						MD4	e: csale	
12									
13	V	alable 2: Te	aperature				Mole	e: Inciental	
14	Lower Bound :		10.000 ° Up	per llound:		204.40*	No. of h	naciiciila:	10 *
16					TABLE				
17 18					Re with				
TP	PTCS SLIC	тетар	eranre	there	ua a	гнеаі сарасну		noia	n bensi ij
Я	kPa		c		4	likgmale-C)		kan	nale In 2)
21	2068	ļ	10.00	L			121.5		11.39
1	3069		29.44	L L	_		121.6		11.12
22	2,66		10.00	<u> </u>	_		155.5		1020
	3069		97,79	L L			146.6		10.30
35	2068	1	107.2	ī			151.9		1001
2	2068	i	1257	L			158.5		5.701
28	2068		146.1	L			165.6		9.379
ъ	3065		195.5	L			Π3.2		5.051
20	3069		1961	L			192.0		9.991
31	2068		204.4	L			192.3		8.255
22					PROPERTIES				
34			0 ae rai		Lieuki Phase				
25	Vapour/Phare Rection			0000	1,0000				
35	Traceata :	K 2)		93.33*	98.33				
2	PRESSUE :	\$13)		689.5.	665.5				
20	Molar Flow	(ign dellý		5.907	6.907				
39	Mass Flow	4019		4536*	453.6				
•	Child Cailling Viol Flows	(n 317)	5000	1.5142	0.51+2		-+		
+1	Mora Enhang	esterninges delaket	5.310	765.6	750.6				
4	Molor Enlosy 4	Warede-Co		130.2	-120.2		-+		
++	Mass Enlogy	(k)/ba-C)		1.568	-1.668				
-6	Heal Now	\$-JIT	3.633		3.432:+005				
4 5	Molar Dencily	ág maleire 2		10.19	10.19				
a	Mass Densily	(gin 3		795.1	796.1				
*	Chi kie al Lig Marr Pervil (r	tain 2		M22	663.2		_		
0	Lia Mass Density as Ski Com	d ¢ain3		8829	882.9		-+		
3	Mana Haaldanaadh	del de Ch		1.000	1,667		-+		
2	Themal Conjuctivity	(Win-K)		1130	0,1130				
50	Viscosily	(12)		12708	0.2708				
54	Surface Tension	(lane/an)		19.13	19.13				
55	Mole cular Weight			78.11	78.11				
3 5	Z Fector		2.230	e-002	3.220+-002				
57	Mole Frac (Tenzene)		1	.0000.	1.0000				
122	Mole Free (Telvane)			100000 *	0.0000.0				1

2. Generación de curva de equilibrio liquido-vapor utilizando una Spreadsheet.

Se propone generar la curva de equilibrio liquido-vapor para la mezcla Etanol-Agua. Para ello comenzar iniciando un caso nuevo que se guardará como "*CURVAS XY-etanol-agua.hsc*".

- a) Crear al lista de componentes: etanol y agua
- b) Seleccionar el paquete de propiedades UNIQUAC para la fase liquida
- c) Seleccionar el paquete SRK para la fase vapor
- d) Introducir los equipos del flowsheet que se muestra en la siguiente figura:

A continuación, introducir dos Spreadsheet u hojas de datos.

La *Spreadsheet* es una herramienta de HYSYS que permite tener acceso total a todas las variables del proceso. Desde aquí se pueden adicionar funciones, fórmulas, operadores lógicos y exportar e importar variables. Todo cambio en el ambiente de simulación se refleja de inmediato en la *Spreadsheet* y viceversa.

Es muy útil para analizar los resultados o la influencia de una variable sobre otra, sin necesidad de abrir varias ventanas de equipos a la vez. Algunas aplicaciones importantes de las *Spreadsheets* son su utilización en operaciones matemáticas que utilizan variables de simulación como por ejemplo conversiones y rendimientos de reactores o costos de equipos.

Equipo	Sprea	dsheet
Nombre	Presión	
Celda	Contenido	Exportar a
A1	Presión	
A2	1.000	
B1	=A2	Etanol-pressure
B2	=A2	Agua-pressure

🛲 Pr	esión			
Current Cell Variable <u>T</u> ype: B2 Variable: =a2		<u></u>	<u> </u>	E <u>x</u> portable 🔽 Angles in: Rad 💌
	A	В	С	D 🔺
1	presion	1.000		
2	1.000	1 000]	
3		View Associate	d Object	
4		Import Variable		
5		Export Formula	a Result 💦 🛌	
5		Disconnect Imp	ort/Export 😽	
/				
	I			
	Connections Par	ameters Formulas	_Spreadsheet	Calculation Order es
	Delete	F <u>u</u> nction Help	Spreadsh	eet Only 🔲 Ignored

* Select Export for	cell			
Flowsheet Case (Main)	<u>O</u> bject Agua Etanol Liquido Mezcla Mezcla caliente Q Vapor E-100 MIX-100 ■ Presión	<u>V</u> ariable Phase Thermal Conducti Phase User Property Phase Viscosity Phase Watson K Phase Z Factor pHValue Power Pressure Product Nozzle Elevatior	Variable <u>Specifics</u>	Object Filter Object Filter All Streams UnitOps Logicals Utilities ColumnDos
Variable <u>D</u> escription	Current Cell Exported To B1 Variable	o: Etanol e: Pressure	E <u>x</u> portab Angles in	le 🔽 Rad 💌
	A 1 presion 2 1.000 3 4 5 6 7 8 8	B	C	
	Connections Pa	arameters Formulas Spr F <u>u</u> nction Help	Spreadsheet Only	n Order 🗦 🗍 🦵

Spreadsheet Composición

Equipo	Spreadsheet		
Nombre	Composición		
Celda	Contenido	Exportar a	
A1	Etanol		
A2	Agua		
A4	F		
B1	0.5		
B2	=1-B1		
B4	100		
C1	=B4*B1	Etanol-Molar Flow	
C2	=B4*B2	Agua-Molar Flow	

🛲 C	🖩 Composición 📃 🗖 🔀				
	irrent Cell Exported To: A C2 Variable: M 34*82	gua olar Flow	E <u>x</u> por Angle	ttable ⊽ sin: Rad ▼	
	A	В	C	D	
1	Etanol	0.5000	50.00 kgmole/h		
2	Agua	0.5000	50.00 kgmole/h		
3					
4	F	100.0			
5					
8					
7					
6					
8				_	
⊥				•	
-	Connections Param	eters Formulas Sp	oreadsheet Calcul	lation Order 👍 🗍	
	Delete	F <u>u</u> nction Help	Spreadsheet Onl	۲ 🔽 Ignored	

Especificaciones de las corrientes y equipos:

Corriente	Material		
Nombre	Etanol		
Propiedad	Valor	Unidad	
Temperatura	25	[°C]	
Fracción molar de etanol	1.000	[adim]	
Fracción molar de agua	0.000	[adim]	

Corriente	Mat	erial
Nombre	Agua	
Propiedad	Valor	Unidad
Temperatura	25	[°C]
Fracción molar de etanol	0.000	[adim]
Fracción molar de agua	1.000	[adim]

Equipo	Heater	
Nombre	E-100	
Propiedad	Valor	Unidad
Delta P	0	[KPa]
Corriente	Mat	erial
Nombre	Mezcla Caliente	
Propiedad	Valor	Unidad
Fracción vaporizada	0.000	[adim]
Corriente	Ene	rgía
Nombre	Q-100	
Equipo	Separador	
Nombre	V-100	
Corriente	Mat	erial
Nombre	Vapor	
Corriente	Mat	erial
Nombre	Líquido	

El PFD resultante quedará así:

Etanol Agua MI	Mezcla X-100	Mezcla ca	aliente	Vapor V-100 Liquido
		Mezc	la calien	te
		Temperature	79.74	С
Presión	Composición	Pressure	1.000	atm
		Molar Flow	100.0	kgmole/h

HYSYS permite al usuario ver las propiedades y tablas para el PFD, operaciones unitarias y corrientes.

En éste caso, se muestra la tabla de propiedades de la corriente Mezcla caliente. La misma se obtiene haciendo clic con el botón derecho del mouse sobre la corriente y seleccionando *Show Table*.

Si se desea ver toda la información del PFD, hacer clic sobre el mismo, seleccionar Add *Workbook Table*, y luego el tipo de información deseada.

Generación de los diagramas X-Y y X-Temp

Ir a "Tool"- "Databook" y en la pestaña "Variables" insertar las siguientes:

- i. Líquido-Temperature
- ii. Composición-C1
- iii. Composición-B1
- iv. Líquido-Comp mole fracc-Ethanol
- v. Vapor-Comp mole fracc-Ethanol

\land DataBook	
A <u>v</u> ailable Data Object Liquido Composición Composición Liquido Vapor	Variable Temperature C1: B1: Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Delete
	🚳 DataBook 📃 🗖 🗙
	Available Case Studies Curva X-Y Curva X-Temp Add Delete Uiguido View Object View Composición Composición B1: Liquido Comp Mole Frac (Ethanol) Vapor Comp Mole Frac (Ethanol) Vapor Comp Mole Frac (Ethanol) Vapor Vapor
	Variables Process Data Tables Strip Charts Data Recorder Case Studies

Ir a la pestaña "*Case Studies*" presionar "*Add*" para agregar uno con nombre "Curva X-Y". Un caso de estudio permite realizar varias corridas de una simulación variando los parámetros de entrada. Se deben establecer cuales serán las variables independientes y cuales las dependientes. Para ello tildar en *Ind*: Composición-B1 y en *Dep*: Liquido-Comp mole fracc-Ethanol y Vapor-Comp mole fracc-Ethanol

Agregar otro caso de estudio con el nombre: "Curva X-Temp" tildando en *Ind*: Composición-B1 y en *Dep*: Líquido-Temperature.

a) La curva de equilibrio liquido-vapor del Etanol en Agua se genera para la presión de operación: 1 atm, especificada en la Spreadsheet "Presión" (celda A2).
Para graficar la curva de composición liquido-vapor debe estar seleccionado el caso de estudio "*Curva X-Y*". Al presionar "*View*" completar los campos para el limite inferior: 0.00, el limite superior: 0.99 y el salto: 0.01. Luego presionar el botón "*Start*" y luego "*Results*".

📲 Case Studies Setup - Main				
Case St <u>u</u> dies Curva X-Y Curva X-Temp	Curva X-Y	Number of States 100		
Curva An emp	Variable	Low Bound	High Bound	Step Size
	B1:	0.0000	0.9900	1.000e-002
	Independent Variables Setup	Display Pr	operties Fa	iled States
A <u>d</u> d Delet	te <u>R</u> esults	_		Sugg

Una vez generada la curva sus atributos se pueden modificar haciendo clic con el botón secundario del mouse sobre la misma ("*Cases Studies -Main*") y del menú contextual seleccionar "*Graph Control*" donde se puede cambiar los nombres y escalas de los ejes, los colores de las figuras, estilo de líneas etc. Se puede además, ocultar los símbolos y dejar solo las líneas para que el cruce de las curvas sea más visible.

Copiar la figura en el informe. Repetir lo mismo cambiando el paquete por WILSON, liquido ideal (solución regular o modelo ANTOINE) y compare resultados.

¿Qué se puede conclusir? ¿Hay diferencias en los resultados obtenidos con los diferentes modelos de estimación de propiedades fisicoquímicas? ¿Cuál refleja mejor la realidad según su criterio?

b) Generación de la curva de temperatura - composición

Siguiendo los pasos análogos a los realizados en el ítem anterior, pero esta vez en "*Cases Studies Setup-Main*" debe estar seleccionado el caso de estudio "*Curva X-Temp*", fijar los mismos limites que en apartado a). Presionar "*Start*" y el grafico se visualizará en la ventana correspondiente. Emplear el paquete WILSON.

¿Qué se puede concluir? ¿Hay diferencias en los resultados obtenidos con los diferentes modelos de estimación de propiedades fisicoquímicas?¿Las bajas presiones mejoran o empeoran la obtención de alcohol puro?

3. Problemas extra aúlicos propuestos

Problema 1

Obtener la curva de equilibrio liquido-vapor para la mezcla Acetona – Cloroformo y analizar los resultados utilizando diferentes modelos de estimación de propiedades fisicoquímicas.

Problema 2

Analizar el comportamiento del sistema azeotrópico heterogéneo conformado por la mezcla ternaria Agua – Benceno – Etanol, de gran importancia práctica en operaciones de separación. Estimar el número de fases y composición de la mezcla a 1 atm de presión y a $T_1 = 25$ °C y $T_2 = 63.7$ °C. Adoptar como composición de la alimentación $x_W = 0.5$, $x_E = 0.2$, $x_{Bz} = 0.3$.

Seleccionar el modelo de estimación de propiedades fisicoquímicas que mejor refleje la realidad según su criterio.