# **HACULTAD REGIONAL ROSARIO**

CÁTEDRA DE "Balances de Materia y Energía"



Práctica con simulador

MMXXIV

# Aplicación del simulador dwsim

# 1) Calentadores-enfriadores

Una corriente de aire de 4 [kmol/hr] a una presión de 1 atm se calienta desde 30 °C. Para ello se le incorpora 4000 [Kcal/hr]. Si no hay caída de presión, calcular la temperatura de salida.

1- Iniciar caso nuevo: Haciendo click (D) o "File"/"New Steady state Simulation":

|                                                                                                                |                                                            | ۰.             | And the spin of the second sec |        |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 💮 🔤 Simulation Configurat                                                                                      | ion Wizard                                                 |                | Addate Corporate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Introduction<br>• Introduction<br>• Compounds<br>• Property Packages<br>• Flash Algorithm<br>• System of Units | Welcome to the simulation con<br>Click "Next" to continue. | figuration wiz | ard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
|                                                                                                                | Close Wizard and go to the s                               | Simulation Co  | nfiguration Window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Next > |

NEXT>

2- Elegir componentes: en este caso aire ("Air")

| G 🔄 Simulation Configuration                                                                                      | n Wizard                                              |              | ł              | Anna anna anna anna anna anna anna anna |           | -         |                        |                                                      |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------|----------------|-----------------------------------------|-----------|-----------|------------------------|------------------------------------------------------|
| Compounds <ul> <li>Introduction</li> <li>Compounds</li> <li>Property Packages</li> <li>Flash Algorithm</li> </ul> | Select the compounds<br>"Next" to continue.<br>Search | that you wan | t to add to tł | e simulation.                           | Use the t | extbox to | search and select a co | ompound in the list. Click<br>Added<br>Air (ChemSep) |
| <ul> <li>System of Units</li> </ul>                                                                               | Name                                                  | CAS #        | Formula        | Database                                | СР        | FP 🔺      | Add >                  |                                                      |
|                                                                                                                   | Argon                                                 | 7440-37-1    | Ar             | ChemSep                                 |           |           | < Remove               | 1                                                    |
|                                                                                                                   | Bromine                                               | 7726-95-6    | BrBr           | ChemSep                                 |           |           | Clear List             |                                                      |
|                                                                                                                   | Carbon tetrachloride                                  | 56-23-5      | CCI4           | ChemSep                                 |           |           | Clear List             |                                                      |
|                                                                                                                   | Carbon monoxide                                       | 630-08-0     | CO             | ChemSep                                 |           |           | < View Data            |                                                      |
|                                                                                                                   | Carbon dioxide                                        | 124-38-9     | 000            | ChemSep                                 |           |           | View Data >            | 1                                                    |
|                                                                                                                   | Carbon disulfide                                      | 75-15-0      | SCS            | ChemSep                                 |           |           |                        |                                                      |
|                                                                                                                   | Phosgene                                              | 75-44-5      | COCI2          | ChemSep                                 |           |           | <b>1</b>               |                                                      |
|                                                                                                                   | Trichloroacetyl chl                                   | 76-02-8      | CCI3COCI       | ChemSep                                 |           |           | (ChEDL Thermo)         |                                                      |
|                                                                                                                   | Hydrogen chloride                                     | 7647-01-0    | HCI            | ChemSep                                 |           |           |                        |                                                      |
|                                                                                                                   | Chlorine                                              | 7782-50-5    | CI2            | ChemSep                                 |           |           |                        |                                                      |
|                                                                                                                   | Hydrogen iodide                                       | 10034-85-2   | HI             | ChemSep                                 |           |           | Import (Online)        |                                                      |
|                                                                                                                   | Hydrogen                                              | 1333-74-0    | H2             | ChemSep                                 |           |           |                        | 1                                                    |
|                                                                                                                   | Water                                                 | 7732-18-5    | нон            | ChemSep                                 |           |           | Import (JSON)          |                                                      |
|                                                                                                                   | Hydrogen sulfide                                      | 7783-06-4    | HSH            | ChemSen                                 |           | -         |                        |                                                      |
|                                                                                                                   | 1                                                     |              |                |                                         |           |           |                        |                                                      |
|                                                                                                                   |                                                       |              |                |                                         |           |           |                        | Next > Cancel                                        |

## NEXT>

3- <u>Elegir paquete de propiedades fisicoquímicas:</u> en este caso Ley de Raoult ("Raoult's Law"). Presionar Add:

| 🚱 🔜 Simulation Configuratic                                                                                         | n Wîzard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | termenter of term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Property Packages<br>- Introduction<br>- Compounds<br>• Property Packages<br>• Flash Algorithm<br>• System of Units | Select and Add the Property Packages that you want to use in yo<br>flowsheet objects. Click "Next" to continue.<br>Available Property Packages<br>Chao-Seader<br>Grayson-Streed<br>Raoult's Law<br>Lee-Kesler-Plöcker<br>Extended UNIQUAC (Aqueous Electrolytes)<br>Black Oil<br>PC-SAFT (with Association Support)<br>Perturbed Hard-Sphere-Chain (PHSC)<br>Peng-Robinson w/ Wong-Sandler Mixing Rules (PRWS)<br>Statistical Associating Fluid Theory (SAFT)<br>Valderrama-Patel-Teja EOS (VPT)<br>CAPE-OPEN<br>Click here to get help on selecting the best Thermodynamic Mo | ur simulation. The first on the list will be used by default by all          Added Property Packages         Name       Type         Raoult's Law          With the second seco |
|                                                                                                                     | Click here to learn which methods and correlations are being us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed by the packages to calculate fluid properties.           Next >         Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

NEXT>

4- Elegir algoritmo de flash: en este caso "Nested Loop (VLE)":

| 🚱 🔜 Simulation Configuratio                                                                                                                        | ı Wizard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flash Algorithm <ul> <li>Introduction</li> <li>Compounds</li> <li>Property Packages</li> </ul> Flash Algorithm <ul> <li>System of Units</li> </ul> | The Flash Algorithm is the component responsible for determining the thermodynamic phases at equilibrium, their amounts (and the amounts of the compounds on these phases) at the various simulated process conditions.<br>Select a Default Flash Algorithm for your simulation. If your system can show instabilities in the liquid phase (immiscible compounds), select an algorithm to predict the equilibrium with two liquid phases (VLLE). To calculate equilibrium including a solid phase, select the corresponding algorithm. For complex systems, use one of the two Gibbs Minimization algorithms.<br>Click "Next" to continue. |
|                                                                                                                                                    | Default Flash Algorithm       Nested Loops (VLE)         Inside-Out (VLE)       Inside-Out (VLE)         Inside-Out (VLE)       Gibbs Minimization (VLE)         Gibbs Minimization (VLE)       Nested Loops (SVLE - Eutectic Systems)         Nested Loops (SVLE - Solid Solution Systems)       Nested Loops (VLE - Immiscible Liquids)         Algorithm Description       Default Flash Algorithm, based on the Rachford-Rice VLE equations.         Click here to learn more about the flash algorithms implemented in DWSIM.                                                                                                         |
|                                                                                                                                                    | Next > Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

NEXT>

5- Elegir sistema de unidades: en este caso "SI":

| 🚱 🔜 Simulation Configuratio                                                                    | on Wizard                                                                             | ł                                                                                        | Respire Talan<br>Balance and the A                                                       |                                |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|
| System of Units <ul> <li>Introduction</li> <li>Compounds</li> <li>Property Packages</li> </ul> | Select the desired System<br>perform other operations<br>Click "Finish" to exit the v | of Units for your simulatic<br>in the simulation setup wi<br>vizard and start simulating | m. You can change the units of existing sy:<br>ndow anytime after finishing this wizard. | stems, include new systems and |
| <ul> <li>Flash Algorithm</li> <li>System of Units</li> </ul>                                   | System of Units SI                                                                    |                                                                                          | <b>•</b>                                                                                 |                                |
| b system of onics                                                                              | Property                                                                              | Unit                                                                                     | Property                                                                                 | Unit                           |
|                                                                                                | Temperature                                                                           | К                                                                                        | Pressure                                                                                 | Pa                             |
|                                                                                                | Mass Flow Rate                                                                        | kg/s                                                                                     | Molar Flow Rate                                                                          | mol/s                          |
|                                                                                                | Volumetric flow rate                                                                  | m3/s                                                                                     | Specific Enthalpy                                                                        | kJ/kg                          |
|                                                                                                | Specific Entropy                                                                      | kJ/[kg.K]                                                                                | Molecular Weight                                                                         | kg/kmol                        |
|                                                                                                | Density                                                                               | kg/m3                                                                                    | Surface Tension                                                                          | N/m =                          |
|                                                                                                | Heat Capacity                                                                         | kJ/[kg.K]                                                                                | Thermal Conductivity                                                                     | W/[m.K]                        |
|                                                                                                | Kinematic Viscosity                                                                   | m2/s                                                                                     | Dynamic Viscosity                                                                        | Pa.s                           |
|                                                                                                | Delta-T                                                                               | К.                                                                                       | Delta-P                                                                                  | Pa                             |
|                                                                                                | Length/Head                                                                           | m                                                                                        | Energy Flow                                                                              | kW                             |
|                                                                                                | Time                                                                                  | s                                                                                        | Volume                                                                                   | m3                             |
|                                                                                                | Molar Volume                                                                          | m3/kmol                                                                                  | Area                                                                                     | m2                             |
|                                                                                                | Diameter/Thickness                                                                    | mm                                                                                       | Force                                                                                    | N                              |
|                                                                                                | Acceleration                                                                          | m2/s                                                                                     | Heat Transfer Coefficient                                                                | W/[m2.K]                       |
|                                                                                                | Molar Conc.                                                                           | mol/m3                                                                                   | Mass Conc.                                                                               | kg/m3 👻                        |
|                                                                                                |                                                                                       |                                                                                          |                                                                                          | <b>Finish</b> Cancel           |

## FINISH

| DWSIM                              | And and a second s |            |                                                                                                       | 10         | 0 - 8                                         |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|
| Eile Egit Insert Iools Ubli        | es Optimication Scripts Besults Bugins Windows Yew Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                       |            | - 5                                           |
|                                    | 9 4 9 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000000000 | and them.                                                                                             | _          |                                               |
| Howsheet Material Streams          | speadoet · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flowsheet  | Objects                                                                                               |            |                                               |
|                                    | · multi Y / N / A / A / A / A / A / A / A / A / A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Filer Lat  | Absorption Column<br>Model for sporous simulation of<br>absorption columns                            | £          | Filter<br>Solds Filter m                      |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Adiabatic Compressor<br>Model for an adiabatic (sentropic)<br>compressor                              | oFS        | Rowsheet<br>Model for use<br>a flowsheet b    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Adiabatic Expander<br>Model for an adabatic (sentropic)<br>expander                                   | Ľ          | Gas-Liquid<br>Ruid phase i                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2          | CAPE-OPEN Unit Operation<br>Model for utilization of a CAPE-OPEN<br>Unit Operation in the flowsheet   | -1         | Gibbs Read<br>Colculates ch<br>for a Material |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ø          | Centrifugal Pump<br>Centrifugal Pump model                                                            | ø          | Heat Excha<br>Rigorous Hea                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | £          | Compound Separator<br>Model for a hypothetical compound<br>separation process                         | ٠          | Heater<br>Sinple heater                       |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Continous Stirred Tank Reactor<br>CSTR model, supports Kinetic and<br>HetCat reactions                | ⇒          | Material S<br>Contains info<br>flowing at sp  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Controller Block<br>Logical block for controlling a variable in<br>the flowsheet                      | ٥          | Onfice Plat<br>Sizes or eval                  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1         | Conversion Reactor<br>Supports reactions defined by amounts<br>of reactant converted as a function of | P          | Piping Seg<br>Defines a pip<br>drop calculat  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •          | Cooler<br>Simple cooler model                                                                         |            | Plug-Row<br>Plug-Row Re<br>Knetic and P       |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>p</b> c | Distillation Column<br>Rigorous model for simulation of<br>distillation columns                       | vo         | Python Sci<br>Python Scrip                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R          | Energy Recycle Block<br>Logical block for Energy Streams                                              | <b>1</b> . | Reboiled A<br>Rigorous rebo                   |
| Information                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Energy Stream                                                                                         |            | Recycle B                                     |
| 3 20/10/2017 09:20:45 To           | To view detailed results of the calculations in real time, enable console redirection and select a debug mode. You must restart DWSIM for the changes to take effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Energy flow from/to Unit Operations                                                                   | R          | Block for cor<br>Streams                      |
| 💡 2 20/10/2017/09/20.45 Tp         | Use the quick connection tool on the toolber to quickly connect objects by pressing the CTRL key and dragging the cursor from the first to the second object.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Equilibrium Reactor                                                                                   |            | Refluxed A                                    |
| 2 20/10/2017 09:20:45 Tp           | Press F5 on any area inside the flowsheet to start a full calculation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 5        | Supports equilibrium constant defined                                                                 | 1          | Rigorous Ref                                  |
| 0 20/10/2017 09:20:45 To           | Hold SHIFT during DWSIM initialization to reset the settings to their default values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | reactoria                                                                                             |            |                                               |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •          | 10                                                                                                    |            | ,                                             |
| Simulation Settings + 🛅 Solver + 🖃 | 🐑 👻 🤪 [20/10/2017 09:20:45 a.m.] To view detailed results of the calculations in real time, enable console redirection and select a debug mode. You must restart DWSIM for the changes to tak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | effect.    |                                                                                                       |            |                                               |
| a 🛆 🕋 👩                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ES 🙆 🔒 🕶                                                                                              | - 40 ·     | 09:20 a.m.                                    |
| 🥐 🖙 🖃 💙                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                       |            | 0/10/2017                                     |

6- personalizar el sistema de unidades:

a-" Edit"/ "Simulation settings"/" Systems of units"/" Create New"

b- Cambiar "Temperature" a [ºC], "Pressure" a [atm], "Mass Flow Rate" a [Kg/h], "Molar Flow Rate" a [Kmol/h] y "Energy Flow" a [Kcal/h]

c- Close

- d- Volver al Flowsheet (pestaña del mismo nombre)
- 7- Armado del caso:
- a- Insertar una "Material Strem" (clickear y arrastrar desde la barra de herramientas)

b- Hacer doble click y editar como se visualiza:

| General Info          |                       |                   |
|-----------------------|-----------------------|-------------------|
| Object                | Aire frio             |                   |
| Status                | Calculated (20/10/20) | 17 09:32:18 a.m.) |
| Linked to             |                       |                   |
| Connections           |                       |                   |
| Upstream              |                       | -                 |
| Downstream            |                       |                   |
| Input Data Compoun    | ds Phase Properties   | Annotations       |
| Flash Spec            | Temperature and Pre   | ssure (TP) 🔹      |
| Temperature           | 25                    | C •               |
| Pressure              | 1                     | atm 👻             |
| Mass Flow             | 115,84                | kg/h 👻            |
| Molar Flow            | 4                     | kmol/h 🔹          |
| Volumetric Flow       | 0,027182269           | m3/s 🔹            |
| Specific Enthalpy     | 0                     | kJ/kg 🔻           |
| Specific Entropy      | 0                     | kJ/[kg.K] 👻       |
| Phase Mole Fraction   | 1                     | Vapor Liquid      |
|                       |                       | Solid             |
| Composition           |                       |                   |
| Basis                 | Mole Fractions        | •                 |
| Solvent               |                       | -                 |
| Compound              |                       | Amount N          |
| Air                   |                       | 1 E               |
|                       |                       |                   |
|                       |                       |                   |
|                       |                       |                   |
|                       |                       |                   |
|                       |                       |                   |
|                       |                       |                   |
| Total: 1              |                       |                   |
| Property Package Sett | ings                  |                   |
|                       | D 10 (1)              | -                 |
| Property Package      | Raoutt's Law (1)      | · .               |

c- Verificar convergencia o presionar F5



- d- Insertar un "Heater". Hacer doble-click
- e- Conectar la corriente creada antes y crear nuevas, una de materia y otra de energía.

| Heater: HEAT-001 |                |  |
|------------------|----------------|--|
| General Info     |                |  |
| Object           | HEAT-001       |  |
| Status           | Not Calculated |  |
| Linked to        |                |  |
| Connections      |                |  |
| Inlet Stream     | Aire frio      |  |
| Outlet Stream    |                |  |
| Energy Stream    |                |  |

f- Cambiar nombres de las nuevas corrientes por "Aire caliente" a la material y "Calor" a la de energía.

g- Editar el Heater

"Pressure drop" en 0, "Efficiency" en 100%, "Calculation Type" en "Heat Added/Removed", "Heating/Cooling" en 4000 [Kcal/h]. Debería quedar como en la figura:

| Heater: HEAT-001         | џ х                                   |
|--------------------------|---------------------------------------|
| General Info             |                                       |
| Object                   | HEAT-001                              |
| Status                   | Calculated (01/01/0001 12:00:00 a.m.) |
| Linked to                |                                       |
| Connections              |                                       |
| Inlet Stream             | Aire Frio 🔻 ≶ 📝                       |
| Outlet Stream            | Aire Caliente 🔹 🖌                     |
| Energy Stream            | Calor 🔻 🗾                             |
| Calculation Parameters   |                                       |
| Calculation Type         | Heat Added/Removed                    |
| Pressure Drop            | 0 kPa 🔻                               |
| Efficiency (0-100%)      | 100                                   |
| Outlet Temperature       | 173,13602 C -                         |
| Temperature Change       | 143,13602 K                           |
| Outlet Vapor Fraction    | 0                                     |
| Heating/Cooling          | 4000 kcal/h 💌                         |
| Property Package Setting | ]5                                    |
| Property Package         | Raoult's Law (1) 🔹                    |
| Flash Algorithm          | Default 🔻                             |
| Notes                    |                                       |
|                          | • • • BIU#   E = =                    |
| X 🖻 🛍                    |                                       |

#### Resultado:

| Aire Frio | Temperature | 30 | С         |               |              |                  | Aire Caliente | Temperature | 173 13602 | C     |
|-----------|-------------|----|-----------|---------------|--------------|------------------|---------------|-------------|-----------|-------|
| Aire Frio | Pressure    | 1  | atm       |               |              |                  | Aire Caliente | Drangura    | 110,10002 | atm   |
| Aire Frio | Molar Flow  | 4  | kmol/h    |               |              |                  | Aire Caliente | Molar Flow  |           | kmol/ |
|           |             |    |           |               |              |                  |               |             |           |       |
|           |             |    |           |               | ~            |                  |               |             |           |       |
|           |             |    | Airo Erio |               |              | Aire Celier      | to            |             |           |       |
|           |             |    | Alle Filo |               | HEAT-001     | Alle Caller      | ne            |             |           |       |
|           |             |    |           |               |              |                  |               |             |           |       |
|           |             |    |           | $\Rightarrow$ |              |                  |               |             |           |       |
|           |             |    |           | Calor         |              |                  |               |             |           |       |
|           |             |    |           |               |              |                  |               |             |           |       |
|           |             |    |           |               | Calor Energy | Flow 4000 kcal/h |               |             |           |       |

Resultado manual: 170,8 ºC

Para visualizar los datos en el flowsheet.

- a-"Insert"/ "Property Table"
- b- Editar haciendo doble click
- c- Elegir la corriente y propiedades de interes
- d- Hacerlo para las 3 corrientes.

#### 2) Intercambiadores de calor

Una corriente de gas de 30 Kg/hr cuya composición es de 80 % de metano, 15 % de etano y 5 % de propano (base molar) y 1 atm de presión, se enfría con aire desde 100 °C hasta 40 °C en un intercambiador en contracorriente. Para ello se emplea una corriente de aire frío cuyo flujo es de 100 Kg/hr, 1 atm de presión y una temperatura de 20 °C.

- a) Calcular la temperatura de salida de la corriente de aire
- b) Calcular el valor de (UA) y el  $\Delta$ Tln



Repetir lo hecho en el punto 1) pero con los componentes "Methane", "Ethane", "Propane", " Nitrogen" y "Oxigen" con 2 "Material Streams"

| aterial Stream: GNe |                      |                   | . <b>4 x</b> | Vaterial Stream: Ae 👳 |                      | ******            | » <b>џ</b> |
|---------------------|----------------------|-------------------|--------------|-----------------------|----------------------|-------------------|------------|
| General Info        |                      |                   |              | General Info          |                      |                   | _          |
| Object              | GNe                  |                   |              | Object                | Ae                   |                   |            |
| Status              | Calculated (01/01/00 | 01 12:00:00 a.m.) |              | Status                | Calculated (01/01/00 | 01 12:00:00 a.m.) | <b>V</b>   |
| Linked to           |                      |                   |              | Linked to             |                      |                   |            |
| Connections         |                      |                   |              | Connections           |                      |                   |            |
| Upstream            |                      | •                 | ) 🔊 🗌        | Upstream              |                      | •                 | ] 📝        |
| Downstream          | HE-002               | •                 | ) 🖉          | Downstream            | HE-002               | •                 | ] 📝        |
| Input Data Compour  | nds Phase Properties | Annotations       |              | Input Data Compound   | ds Phase Properties  | Annotations       |            |
| Flash Spec          | Temperature and Pre  | essure (TP)       | •            | Flash Spec            | Temperature and Pre  | ssure (TP)        | •          |
| Temperature         | 100                  | С                 | <b>-</b>     | Temperature           | 20                   | С                 | -          |
| Pressure            | 1                    | atm               | •            | Pressure              | 1                    | atm               | •          |
| Mass Flow           | 30                   | kg/h              | •            | Mass Flow             | 100                  | kg/h              | •          |
| Molar Flow          | 1,5345465            | kmol/h            | •            | Molar Flow            | 3,4661024            | kmol/h            | •          |
| Volumetric Flow     | 0,013051319          | m3/s              | •            | Volumetric Flow       | 0,023159127          | m3/s              | •          |
| Specific Enthalpy   | 163,64889            | kJ/kg             | •            | Specific Enthalpy     | -5,0575592           | kJ/kg             | •          |
| Specific Entropy    | 1,1339979            | kJ/[kg.K]         | •            | Specific Entropy      | 0,10611742           | kJ/[kg.K]         | •          |
| Phase Mole Fraction | 1                    | Vapor             | iquid        | Phase Mole Fraction   | 1                    | 🎯 Vapor 💿 l       | biupi.     |
|                     |                      | Solid             |              |                       |                      | Solid             |            |
| Composition         |                      |                   |              | Composition           |                      |                   | 1          |
| Basis               | Mole Fractions       | -                 |              | Basis                 | Mole Fractions       | •                 | J          |
| Solvent             |                      |                   |              | Solvent               |                      | Ψ                 |            |
| Compound            |                      | Amount            | N            | Compound              |                      | Amount            | N          |
| Methane             |                      | 0,8               | E            | Methane               |                      | 0                 | E          |
| Ethane              |                      | 0,15              |              | Ethane                |                      | 0                 | С          |
| Propane             |                      | 0,05              |              | Propane               |                      | 0                 |            |
| Nitrogen            |                      | 0                 | <b>~</b>     | Nitrogen              |                      | 0,79              |            |
| Oxygen              |                      | 0                 |              | Oxygen                |                      | 0,21              |            |
|                     |                      |                   |              |                       |                      |                   |            |
|                     |                      |                   |              | Total: 1              |                      |                   |            |
| Total: 1            |                      |                   |              |                       |                      |                   |            |

y un "Heat Exchanger" configurandolo como sigue:

"Calculation Type" a "Cold Fluid Outlet Temperature", "Flow Direction" a "Counter Current", caidas de presión 0 em ambos casos, "Hot Fluid Outlet temperature" a 40 [ºC], "Heat Exchange Area" a 1 [m<sup>2</sup>]



## 3) Torre de enfriamiento

Una corriente de aire de 1000 Kg/hr a 27 °C, 1 atm de presión con una humedad relativa del 40 % ingresa a una torre de enfriamiento de la que sale totalmente saturado y a una temperatura de 30 °C para enfriar una corriente de agua de enfriamiento cuya temperatura es de 50 °C. El sistema está en equilibrio.

- a) Calcular la humedad absoluta de la corriente de aire que sale.
- b) Calcular la cantidad de agua de enfriamiento que se evapora.
- c) Calcular la cantidad de agua que puede enfriarse.

Como lo hecho en los casos anteriores se inicia un nuevo caso con aire y agua como componentes.

Antes de armar el caso necesitamos saber la composición del aire húmedo. Esto se puede hacer a mano o dentro del simulador.

En el 2º caso se agrega una corriente material ("Agua")

"Flash Spec" a "Temperature and Vapor Fraction (TVF)

"Temperature" a 27 [ºC] (el aire que ingresa)

"Phase Mole Fraction" a "0,000" "Vapor"

Composición:

Aire: 0,000, Agua: 1,000

En estas condiciones la presión calculada será la de saturación del agua a 27 [ºC] y 1 [atm]

| aterial Stream: Agua |                    |                        | × <b>p</b> | × |
|----------------------|--------------------|------------------------|------------|---|
| General Info         |                    |                        | _          | 1 |
| Object               | Agua               |                        |            |   |
| Status               | Calculated (20/10) | /2017 06:54:10 p.m.) 🔤 | 2          |   |
| Linked to            |                    |                        |            |   |
| Connections          |                    |                        |            |   |
| Upstream             |                    |                        | <b>P</b>   |   |
| Downstream           |                    | ▼ [                    | 2          |   |
| nput Data Compound   | ds Phase Propert   | ies Annotations        | _          |   |
| Flash Spec           | Temperature and    | Vapor Fraction (TV 🔻   |            |   |
| Temperature          | 27,000000          | C -                    | )          |   |
| Pressure             | 0,035259           | atm 🔻                  |            |   |
| Mass Flow            | 3.600,000000       | kg/h 🔻                 |            |   |
| Molar Flow           | 199,833472         | kmol/h 👻               |            |   |
| Volumetric Flow      | 0,000938           | m3/s 🔻                 |            |   |
| Specific Enthalpy    | -2.432,808261      | kJ/kg 👻                | )          |   |
| Specific Entropy     | -6,549059          | kJ/[kg.K] 👻            | )          |   |
| Phase Mole Fraction  | 0,000000           | 💿 Vapor 💿 Liquid       | 1          | 1 |
| <b>.</b>             |                    | Solid                  |            |   |
| Composition          | Mole Fractions     | -                      |            |   |
| Calvert              | Mole Hactions      | •                      |            |   |
| Solvent              |                    | Ť                      |            |   |
|                      |                    | • · ·                  |            |   |
| Compound             |                    | Amount N               |            |   |
| Air<br>Water         |                    | Amount N<br>0,000000   |            |   |



Con estos datos calcularemos la presión de vapor del agua, y las fracciones molares de agua y aire.

Para ello, yendo a la pestaña "Spreadsheet"

|    | Α      | В        |
|----|--------|----------|
| 1  |        |          |
| 2  |        |          |
| 3  |        |          |
| 4  |        |          |
| 5  |        |          |
| 6  |        |          |
| 7  |        |          |
| 8  |        |          |
| 9  |        |          |
| 10 | Psat   | 0,035258 |
| 11 | HR     | 40       |
| 12 | Pv     | 0,014103 |
| 13 | x agua | 0,014103 |
| 14 | x aire | 0,985896 |

En la celda B10 se importa la presión de la corriente "Agua" (Pr de sat) en atm.

En la celda B11 irá la humedad relativa (40 %)

| En la celda B12 la Presión de vapor como Psat*HR/100 o               | "=B10*B11/100" |
|----------------------------------------------------------------------|----------------|
| En la celda B13 la fracción molar del agua como Pv/P o               | "=B12/1"       |
| En la celda B14 la fracción molar de aire como 1-x <sub>AGUA</sub> o | "=1-B13"       |

Estos dos ultimos datos son los que se usarán para la composición del aire de entrada. El resto de los datos se toman del problema, excepto el flujo de agua que al ser indeterminado se le asignará un número provisorio, ejemplo 1000 [Kg/hr].

Al armar el caso como se ilustra se nota que las temperaturas de salida de la torre de enfriamiento (asumida como de una etapa única) no corresponde con los 30 °C requeridos.

Esto se debe a que el flujo no es el correcto. En efecto vemos que si modificamos, las temperaturas también cambian.

| Flujo de Agua caliente [Kg/h] | Temperatura de salida [ºC] |
|-------------------------------|----------------------------|
| 1000                          | 33,810                     |
| 900                           | 33,093                     |
| 800                           | 32,293                     |
| 700                           | 31,393                     |
| 600                           | 30,368                     |

Como se aprecia, de esta manera se puede llegar "a mano" la solución. No obstante, el simulador cuenta con una herramienta de ajuste que hace precisamente eso pero en forma automática, es el "Controller Block" o ajuste de control que se agrega y configura como se ilustra:

| Controller Block: ADJ                       | 008                                                   |                     | џ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | × |  |  |
|---------------------------------------------|-------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| General Info                                |                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |
| Object                                      | ADJ-008                                               |                     | <ul> <li>Image: A start of the start of</li></ul> |   |  |  |
| Linked Objects                              |                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |
| Manipulated Object                          | AC) Agua Caliente                                     |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • |  |  |
| Property                                    | Mass Flow 🔻                                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |
| Value                                       | 600,000000 kg/h                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |
| Controlled Object                           | AE) Agua Fría                                         |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • |  |  |
| Property                                    | Temperature                                           |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • |  |  |
| Value                                       | 30,367817 (+0,3678) C                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |
| Set-Point (Controlled<br>Tolerance (Maximum | Property) 3(<br>Error) (<br>Open Adjust Control Panel | 0.000000 C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |
| Notes<br>□ □   T ▼ 1<br>X № 10              | • • • B I U                                           | <del>\$</del>   E = |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |

De este modo (luego de seleccionar "Solve Globally" y presionado F5 el caso queda resuelto. Los datos se aprecian en la figura siguiente.

Cabe aclarar, que aprovechanmdo la misma spreadsheet se calculo la humedad absoluta del aire de salida y la cantidad de agua evaporada como diferencia entre el flujo masico de agua que entra y el que sale



# 4) Reactor de conversión

Sea la siguiente reacción:

$$CO_{(g)} + H_2O_{(g)} \rightarrow CO_{2(g)} + H_{2(g)}$$

a) Calcular el calor (en Kcal) a entregar o retirar a 1 mol de CO si los reactantes entran a 600 ºF y los productos salen a 600 ºF.

b) Si la reacción es adiabática e ingresa a 600 ºF ¿a qué temperatura sale?

El caso se arma del modo habitual incorporando como componentes "Carbon monoxide", "water", "Carbon dioxide" y "Hydrogen" y "Peng Robinson" como base (apto para gases).

La reacción se incorpora de la siguiente manera:

a) "Tools"/"Reactions Manager"/"+"/"Conversion"

b) completar el fomulario como se indica:

| Edit Conversion Reaction                         |                                                                       |          |          | <b>—</b>       |  |  |  |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------|----------|----------|----------------|--|--|--|--|--|
| Identification                                   |                                                                       |          |          |                |  |  |  |  |  |
| Name Reacción                                    |                                                                       |          |          |                |  |  |  |  |  |
| Description                                      |                                                                       |          |          |                |  |  |  |  |  |
|                                                  |                                                                       |          |          |                |  |  |  |  |  |
| Components/Stoichiometry                         |                                                                       |          |          |                |  |  |  |  |  |
| Name                                             | Molar Weight                                                          | Include  | BC       | Stoich. Coeff. |  |  |  |  |  |
| Carbon monoxide                                  | 28,01                                                                 | <b>V</b> | <b>V</b> | -1             |  |  |  |  |  |
| Water                                            | 18,015                                                                | <b>V</b> |          | -1             |  |  |  |  |  |
| Carbon dioxide                                   | 44,0095                                                               | <b>V</b> |          | 1              |  |  |  |  |  |
| Hydrogen                                         | 2,01588                                                               | <b>V</b> |          | 1              |  |  |  |  |  |
|                                                  |                                                                       |          |          |                |  |  |  |  |  |
| Stoichiometry OK Balance                         | Stoichiometry OK Balance Heat of Reaction (kJ/kmol_BC) (25 °C) -41166 |          |          |                |  |  |  |  |  |
| Equation CO + HOH> OCO + H2                      |                                                                       |          |          |                |  |  |  |  |  |
| Conversion Reaction Parameters                   |                                                                       |          |          |                |  |  |  |  |  |
| Base Comp Carbon monoxide                        |                                                                       |          | Phase Mi | xture 🔻        |  |  |  |  |  |
| Conversion [%, f(T)] = 100                       |                                                                       |          |          | T in K         |  |  |  |  |  |
| Use '.' as the decimal separator on the conversi | on expression.                                                        |          | Cancel   | ОК             |  |  |  |  |  |

Se arma el caso especificando la entrada como:

| Intrada<br>Calculated (20/10/201<br>RC-001<br>s Phase Properties<br>Temperature and Pres | I7 07:46:11 p.m.)<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓     |  |  |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| Entrada<br>Calculated (20/10/201<br>RC-001<br>s Phase Properties<br>Temperature and Pres | I7 07:46:11 p.m.)<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓                    |  |  |  |
| Calculated (20/10/201<br>RC-001<br>8 Phase Properties<br>Temperature and Pres            | 17 07:46:11 p.m.)<br>▼<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓               |  |  |  |
| RC-001<br>s Phase Properties<br>Temperature and Pres                                     | Annotations                                                                            |  |  |  |
| RC-001<br>s Phase Properties<br>Temperature and Pres                                     | Annotations                                                                            |  |  |  |
| RC-001<br>s Phase Properties<br>Temperature and Pres                                     | Annotations                                                                            |  |  |  |
| RC-001<br>s Phase Properties<br>Temperature and Pres                                     | Annotations                                                                            |  |  |  |
| s Phase Properties<br>Temperature and Pres                                               | Annotations                                                                            |  |  |  |
| Temperature and Pres                                                                     |                                                                                        |  |  |  |
|                                                                                          | ssure (TP) 🔹                                                                           |  |  |  |
| 315,55556                                                                                | C -                                                                                    |  |  |  |
| 1                                                                                        | atm 🔻                                                                                  |  |  |  |
| 0,046025                                                                                 | kg/h 👻                                                                                 |  |  |  |
| 2                                                                                        | mol/h 👻                                                                                |  |  |  |
| 2,6819281E-05                                                                            | m3/s 🔻                                                                                 |  |  |  |
| 405,14477                                                                                | kJ/kg 👻                                                                                |  |  |  |
| 1,2207864                                                                                | kJ/[kg.K] 🔻                                                                            |  |  |  |
| 1 💿 Vapor 🕥 Liquid                                                                       |                                                                                        |  |  |  |
|                                                                                          | Solid                                                                                  |  |  |  |
|                                                                                          |                                                                                        |  |  |  |
| Mole Fractions                                                                           | •                                                                                      |  |  |  |
|                                                                                          | *                                                                                      |  |  |  |
| 1                                                                                        | Amount N                                                                               |  |  |  |
|                                                                                          | 0,5 E                                                                                  |  |  |  |
|                                                                                          | 0,5 C                                                                                  |  |  |  |
|                                                                                          |                                                                                        |  |  |  |
|                                                                                          | 0,046025         2         2,6819281E-05         405,14477         1,2207864         1 |  |  |  |



| Al armar el caso insertar un "Conversion Reactor", se lo conecta a la entrada creada y se le agreg |
|----------------------------------------------------------------------------------------------------|
| las dos salidas materiales y la corriente energética. Finalmente se lo configura como isotérmico:  |

| Conversion Reactor: RC-              | 001 ·····                                         |
|--------------------------------------|---------------------------------------------------|
| General Info                         |                                                   |
| Object                               | RC-001                                            |
| Status                               | Calculated (20/10/2017 07:46:11 p.m.)             |
| Linked to                            |                                                   |
| Connections                          |                                                   |
| Inlet Stream                         | Entrada 🔻 🌾                                       |
| Outlet Stream 1                      | Salida 🔹 🗸                                        |
| Outlet Stream 2                      | L 🔹 🛃                                             |
| Energy Stream                        | Calor 🔻 🌾                                         |
| Calculation Parameters<br>Parameters |                                                   |
| Reaction Set                         | Default Set                                       |
| Calculation Mode                     | Isothermic 🔹                                      |
| Minimization Method                  | ·                                                 |
| Outlet Temperature                   | 25 C 👻                                            |
| Pressure Drop                        | 0 kPa 💌                                           |
| Property Package Set                 | tings                                             |
| Property Package                     | Peng-Robinson (PR) (1) 🔹                          |
| Flash Algorithm                      | Default 💌                                         |
|                                      |                                                   |
| Results<br>General Reactions Co      | nversions                                         |
| Property                             | Value                                             |
| Delta-T                              |                                                   |
| Heat Load                            | -9.3092714 kcal/h                                 |
|                                      |                                                   |
|                                      |                                                   |
| Notes                                |                                                   |
| 🔲 🖿   T 🕶 🖅 🖛                        | ■ <b>▼</b>   <b>B</b> I <b>U</b> #   <b>E</b> = 3 |
| X B 🗈                                |                                                   |
|                                      |                                                   |

### El resultado es:

| Entrada | Temperature                                | 315,55556 | C     |        | Salida  | Temperature                               | 315,55556 | С     |
|---------|--------------------------------------------|-----------|-------|--------|---------|-------------------------------------------|-----------|-------|
| Entrada | Pressure                                   | 1         | atm   |        | Salida  | Pressure                                  | 1         | atm   |
| Entrada | Molar Flow                                 | 2         | mol/h |        | Salida  | Molar Flow                                | 1,9999835 | mol/h |
| Entrada | Molar Fraction (Mixture) / Carbon monoxide | 0,5       |       | $\sim$ | Salida  | Molar Fraction (Mixture) / Carbon dioxide | 0,5       |       |
| Entrada | Molar Fraction (Mixture) / Water           | 0,5       | (inci | Calida | Salida  | Molar Fraction (Mixture) / Hydrogen       | 0,5       |       |
|         |                                            |           | ⇒—    |        | Calor I | Energy Flow -9,3092714 kcal/h             |           |       |
|         |                                            | Ca        | lor   | L      |         |                                           |           |       |

Valor manual: 8,935 [Kcal/hr] que es el correspondiente a 1 mol de CO

Para el punto b se cambia la especificación del reactor como "Adiabatic" dando:

| naua    | Temperature                                | 315,55556 | С     | Salida | a Temperature                             | 794,33564 | С     |
|---------|--------------------------------------------|-----------|-------|--------|-------------------------------------------|-----------|-------|
| intrada | Pressure                                   | 1         | atm   | Salida | a Pressure                                | 1         | atm   |
| ntrada  | Molar Flow                                 | 2         | mol/h | Salida | a Molar Flow                              | 1,9999835 | mol/h |
| ntrada  | Molar Fraction (Mixture) / Carbon monoxide | 0,5       |       | Salida | Molar Fraction (Mixture) / Carbon dioxide | 0,5       |       |
| Entrada | Molar Fraction (Mixture) / Water           | 0,5       |       | Salida | a Molar Fraction (Mixture) / Hydrogen     | 0,5       |       |
|         |                                            | Ca        | ilor  | Calor  | Energy Flow 0 kosl/h                      |           |       |
|         |                                            |           |       |        |                                           |           |       |

Valor manual: 753 [ºC]

Los errores obtenidos en ambos casos son entendibles dado que en el cálculo manual se asumieron lineales las correlaciones para las capacidades caloríficas.

## 5) Operaciones de usuario con excel.

El simulador dwsim permite crear operaciones de usuario programables en lenguaje Phyton pero existe una opción más sencilla y rápida de implementar: planillas de cálculo.

En el ejemplo de psicrometría vimos que para cada corriente de aire húmedo hay que implementar de nuevo todas las ecuaciones. Veremos cómo hacerlo con una planilla de cálculo para una sóla corriente pero que puede escalarse para muchas casi sin esfuerzo adicional.

Sea por ejemplo ya hecho: una corriente de 1000 [kg/hr] de aire a 27 [ºC] y 40 % de h.

Se inicia un caso con aire y agua usando la ley de Raoult como paquete fisicoquímico. Se incorpora una corriente de aire seco de las siguientes características:

| formation Connections                                                                                                                                                                                                |                                                                                                 |                        |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------|--|--|--|
| General Info                                                                                                                                                                                                         |                                                                                                 |                        |  |  |  |
| Object                                                                                                                                                                                                               | Aire seco                                                                                       |                        |  |  |  |
| Status                                                                                                                                                                                                               | Calculated (29/02/2024 10:00:14 a.m.)                                                           |                        |  |  |  |
| Linked to                                                                                                                                                                                                            |                                                                                                 |                        |  |  |  |
| roperty Package Settings                                                                                                                                                                                             |                                                                                                 |                        |  |  |  |
| Property Package                                                                                                                                                                                                     | Raoult's Law (1)                                                                                | •                      |  |  |  |
|                                                                                                                                                                                                                      |                                                                                                 |                        |  |  |  |
| nput Data Results Ann                                                                                                                                                                                                | otations Dynamics                                                                               | Floating Tables        |  |  |  |
| Stream Conditions Comp                                                                                                                                                                                               | oound Amounts                                                                                   |                        |  |  |  |
|                                                                                                                                                                                                                      |                                                                                                 |                        |  |  |  |
| Flash Spec                                                                                                                                                                                                           | emperature and Pressu                                                                           | re (TP) 🔻              |  |  |  |
| Flash Spec T<br>Temperature                                                                                                                                                                                          | emperature and Pressu<br>27                                                                     | re (TP)                |  |  |  |
| Rash Spec T<br>Temperature<br>Pressure                                                                                                                                                                               | emperature and Pressu<br>27<br>1                                                                | re (TP)  C atm         |  |  |  |
| Flash Spec T<br>Temperature<br>Pressure<br>Mass Flow                                                                                                                                                                 | emperature and Pressu<br>27<br>1<br>1                                                           | re (TP)   C  atm  kg/h |  |  |  |
| Flash Spec T<br>Temperature<br>Pressure<br>Mass Flow<br>Molar Flow                                                                                                                                                   | emperature and Pressu<br>27<br>1<br>1<br>0.0345304                                              | re (TP)                |  |  |  |
| Flash Spec     T       Temperature     Pressure       Mass Flow     Molar Flow       Volumetric Flow     Notar Flow                                                                                                  | emperature and Pressu<br>27)<br>1<br>0.0345304<br>0.000236228                                   | re (TP)                |  |  |  |
| Flash Spec     T       Temperature     Pressure       Mass Flow     Molar Flow       Volumetric Flow     Specific Enthalpy                                                                                           | emperature and Pressu<br>27<br>1<br>0.0345304<br>0.000236228<br>0.478411                        | re (TP)                |  |  |  |
| Pash Spec     T       Temperature     Pressure       Mass Row     Molar Row       Volumetric Row     Specific Enthalpy       Specific Enthalpy     Specific Entrapy                                                  | emperature and Pressu<br>27<br>1<br>0.0345304<br>0.000236228<br>0.478411<br>0.00669569          | re (TP)                |  |  |  |
| Plash Spec     T       Temperature     Pressure       Mass Flow     Molar Flow       Volumetric Flow     Specific Enthalpy       Specific Enthalpy     Specific Enthalpy       Volumetric Flow     Specific Enthalpy | emperature and Pressu<br>27<br>1<br>0.0345304<br>0.000236228<br>0.478411<br>0.00669569<br>ion 1 | re (TP)                |  |  |  |

| Alle seco (IVI | ateriai Strean                                          | <b>y</b>  |                                                  |   | ······ + ×     |  |  |  |  |
|----------------|---------------------------------------------------------|-----------|--------------------------------------------------|---|----------------|--|--|--|--|
| Information    | Connections                                             | ]         |                                                  |   |                |  |  |  |  |
| General In     | fo                                                      |           |                                                  |   |                |  |  |  |  |
| Object         | Object<br>Status                                        |           | Aire seco  Calculated (29/02/2024 10:00:14 a.m.) |   |                |  |  |  |  |
| Status         |                                                         |           |                                                  |   |                |  |  |  |  |
| Linked to      |                                                         |           |                                                  |   |                |  |  |  |  |
| Property Pac   | Property Package Settings                               |           |                                                  |   |                |  |  |  |  |
| Property Pa    | Property Package Raoult's Law (1)                       |           |                                                  |   |                |  |  |  |  |
| Input Data     | Input Data Results Annotations Dynamics Floating Tables |           |                                                  |   |                |  |  |  |  |
| Stream Cor     | nditions Com                                            | pound Amo | ounts                                            |   |                |  |  |  |  |
| Basis          | Mole Fractio                                            | ons       |                                                  |   | •              |  |  |  |  |
| Solvent        |                                                         |           |                                                  |   |                |  |  |  |  |
| Compou         | ind                                                     | Amount    |                                                  |   | Total: 1       |  |  |  |  |
| Water          |                                                         |           |                                                  | 0 | Normalize      |  |  |  |  |
| Air            |                                                         |           |                                                  | 1 | Equalize       |  |  |  |  |
|                |                                                         |           |                                                  |   | Clear          |  |  |  |  |
|                |                                                         |           |                                                  |   | Accest Changes |  |  |  |  |
|                |                                                         |           |                                                  |   | Acceptionanges |  |  |  |  |

Y una de agua en su punto de saturación:

| romation                                                                     | Connections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |                                                                                                                                                      |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| General In                                                                   | fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                                                                                                                      |
| Object                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Allx                                                         |                                                                                                                                                      |
| Status                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calculated (29/02/202                                        | 4 10:04:57 a.m.) 🛛 🔽                                                                                                                                 |
| Linked to                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                      |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                      |
| operty Pa                                                                    | ckage Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                            |                                                                                                                                                      |
| roperty Pa                                                                   | ickage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Raoult's Law (1)                                             | -                                                                                                                                                    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                      |
| put Data                                                                     | Results Ann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | notations Dynamics                                           | Floating Tables                                                                                                                                      |
| Stream Co                                                                    | nditions Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pound Amounts                                                |                                                                                                                                                      |
| Flash Spe                                                                    | ec [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cemperature and Vapor                                        | Fraction (TVF) 🔹                                                                                                                                     |
| Temperat                                                                     | ure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                           | C •                                                                                                                                                  |
| Property into                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                      |
| riessure                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.031321                                                     | atm 🔻                                                                                                                                                |
| Mass Flor                                                                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.031321                                                     | atm 👻<br>kg/h 👻                                                                                                                                      |
| Mass Flor<br>Molar Flor                                                      | w I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.031321                                                     | atm   kg/h  kmol/h                                                                                                                                   |
| Mass Flor<br>Molar Flor<br>Volumetri                                         | w<br>w<br>c Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.031321 1 0.0555084 0.0120434                               | atm   kg/h  kmol/h  m3/s                                                                                                                             |
| Mass Flor<br>Molar Flor<br>Volumetri<br>Specific F                           | w<br>c Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.031321 1 0.0555084 0.0120434 0 0                           | atm                                                                                                                                                  |
| Mass Flor<br>Molar Flor<br>Volumetri<br>Specific I<br>Specific I             | w C Flow C Flore C Flo | 0.031321 1 0.0555084 0.0120434 0 1 1 59838                   | atm         •           kg/h         •           kmol/h         •           m3/s         •           kcal/kg         •           kJ/[kg,K]         • |
| Mass Flor<br>Molar Flor<br>Volumetri<br>Specific I<br>Specific I<br>Vapor Ph | w C Flow C Flore C Fl | 0.031321<br>0.0555084<br>0.0120434<br>0<br>1.59838<br>Non 1  | atm         •           kg/h         •           kmol/h         •           m3/s         •           kcal/kg         •           kd/[kg,K]         • |
| Mass Flor<br>Molar Flor<br>Volumetri<br>Specific I<br>Specific I<br>Vapor Ph | w c Flow C<br>Enthalpy C<br>Entropy C<br>ase Mole Frac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.031321<br>0.0555084<br>0.0120434<br>0<br>1.59838<br>tion 1 | atm         •           kg/h         •           kmol/h         •           m3/s         •           kcal/kg         •           kd/[kg,K]         • |

| Aux (Material S | tream) 👓     |                 |            | <b>p</b>        |
|-----------------|--------------|-----------------|------------|-----------------|
| Information C   | onnections   |                 |            |                 |
| General Info    |              |                 |            |                 |
| Object          |              | Aux             |            |                 |
| Status          |              | Calculated (29/ | 02/2024 1  | 0:04:57 a.m.) 🔽 |
| Linked to       |              |                 |            |                 |
| Property Packa  | age Settings | -               |            |                 |
| Property Pack   | age          | Raoult's Law (  | 1)         | •               |
| Input Data R    | esults Ann   | otations Dyna   | amics Floa | ating Tables    |
| Stream Condi    | tions Com    | pound Amounts   |            |                 |
| Basis           | Mole Fractio | ns              |            | -               |
| Solvent         |              |                 |            | v               |
| Compound        | ł            | Amount          |            | Total: 1        |
| Water           |              |                 | 1          | Normalize       |
| Air             |              |                 | 0          | Equaliza        |
|                 |              |                 |            | Equalize        |
|                 |              |                 |            | Clear           |
|                 |              |                 |            | Accept Changes  |

Mediante un bloque de especificación transferir el valor de temperatura de la corriente de aire seco a la aux:

| ⊨>        | -·-· <b>S</b> ·-·- |     |
|-----------|--------------------|-----|
| Aire seco | SPEC-01            | Aux |

| SPEC-01 (Specificat | tion Block) 🛛 🕂 🗙         |
|---------------------|---------------------------|
| General Info        |                           |
| Object              | SPEC-01                   |
| Linked Objects      |                           |
| Source Object       | Aire seco 👻               |
| Source Property     | Temperature               |
| Source Value        | 27 C                      |
| Target Object       | aux1 💌                    |
| Target Property     | Temperature               |
| Target Value        | 27 C                      |
| Dependency Expre    | ssion                     |
| Y = f(X) = X        |                           |
| Y = 27 C            |                           |
| Y = Target Variable | e, X = Source Variable    |
| Notes               |                           |
| 🗉 🗋 T 🔹             | Æ ▾ ■ ▾   B I U #   E ≡ ∃ |
| X B 🗈               |                           |
|                     |                           |
|                     |                           |

Entonces, en caso de cambiar la temperatura del aire también lo hará la del agua con lo que el cálculo de la presión de saturación también se actualizará.

De la paleta de operaciones de usuario se agrega una hoja de cálculo:



Se conecta las dos entradas anteriores y una de salida nueva.



En File Path hay 3 botones, uno para buscar una planilla (el formato es muy específico como se verá después), otro para editarla y el tercero para crean una planilla nueva.

| EXL-01 (Spreadsheet) |                                       | <b>p</b> | × |
|----------------------|---------------------------------------|----------|---|
| General Info         |                                       |          |   |
| Object               | EXL-01                                |          |   |
| Status               | Not Calculated                        | <b>~</b> |   |
| Linked to            |                                       |          |   |
| Connections          |                                       |          |   |
| Inlet Stream 1       | Aire seco 🔹                           | <u>ه</u> |   |
| Inlet Stream 2       |                                       | <u>ه</u> |   |
| Inlet Stream 3       |                                       | چ        |   |
| Inlet Stream 4       | <b>•</b>                              | <u>ک</u> |   |
| Outlet Stream 1      | Aire húmedo 💌                         | <u>ه</u> |   |
| Outlet Stream 2      | <b></b>                               | <u>چ</u> |   |
| Outlet Stream 3      |                                       | <u>چ</u> |   |
| Outlet Stream 4      | <b></b>                               | <u>ه</u> |   |
| Inlet Energy Stream  | · · · · · · · · · · · · · · · · · · · | چ 🛃      |   |
| Spreadsheet          |                                       |          |   |
| File Path            |                                       | 20       | ) |
| Variables            |                                       |          |   |
| Input Output         |                                       |          |   |
| Variable             | Value Units                           |          |   |
|                      |                                       |          |   |

La hoja de cálculo contiene 3 hojas, una de entrada, otra de salida y una terceraa para los cálculos:

En la primer hoja (Input) agregamos dos parámetros HR (humedad relativa) y el flujo total deseado como se indica:

| -2 | A                     | В               | С           | D        | E        | F | G           | Н     | 1     | J                |  |
|----|-----------------------|-----------------|-------------|----------|----------|---|-------------|-------|-------|------------------|--|
| 1  | Input stream          | ns to Unit      | t           |          |          |   |             |       |       |                  |  |
| 2  | Do not modify structu | re or name of t | his sheet!  |          |          |   |             |       |       |                  |  |
| 3  |                       |                 |             |          |          |   |             |       |       |                  |  |
| 4  | Conditions            | Stream 1        | Stream 2    | Stream 3 | Stream 4 |   | Parameter   | Value | Unit  | Annotation       |  |
| 5  | Name                  | Aire seco       | aux1        | 0<br>    |          |   | HR          | 40    | %     | Humedad relativa |  |
| 6  | Temperature [K]       | 300.15          | 300.15      |          |          |   | Flujo Total | 1000  | kg/hr | Flujo total      |  |
| 7  | Pressure [Pa]         | 101325          | 3572.58068  | 1        | j.       |   | 10          |       | 10    |                  |  |
| 8  | Enthalpy [KJ/Kg]      | 2.00300887      | -2432.76686 |          | )        |   |             |       |       |                  |  |
| 9  |                       |                 |             |          |          |   |             |       |       |                  |  |
| 10 |                       |                 |             |          |          |   |             |       |       |                  |  |
| 11 | Components            | [mol/s]         | [mol/s]     | [mol/s]  | [mol/s]  |   |             |       |       |                  |  |
| 12 | Water                 | 0               | 55.5084351  | 1        |          |   |             |       |       |                  |  |
| 13 | Air                   | 0.00959177      | 0           |          |          |   |             |       |       |                  |  |
| 14 |                       |                 |             |          |          |   |             |       |       |                  |  |
| 45 |                       |                 |             |          |          |   |             |       |       |                  |  |

# En la hoja Calculations se escribe el modelo:

|    | A                | В             | С               | D                          | E   | F               |  |
|----|------------------|---------------|-----------------|----------------------------|-----|-----------------|--|
| 1  |                  |               |                 |                            |     |                 |  |
| 2  | Humedad relativa | =Input!H5     |                 |                            |     |                 |  |
| 3  | P sat            | =Input!C7     |                 |                            |     |                 |  |
| 4  | PT               | =Output!B7    |                 |                            |     |                 |  |
| 5  | PV               | =B2*B3/100    |                 |                            |     |                 |  |
| 6  | HA               | =B5/(B4-B3)   |                 | 19 (p. 8.) (               |     |                 |  |
| 7  |                  |               |                 | PM                         |     |                 |  |
| 8  | Water            | =B6*B9        | =B8/SUMA(B8:B9) | 18.015                     | =B8 | =B8*\$B\$14/3.6 |  |
| 9  | Air              | 1             | =1-C8           | 28.96                      | =B9 | =B9*\$B\$14/3.6 |  |
| 10 |                  | =SUMA(B8:B9)  |                 | =SUMAPRODUCTO(C8:C9,D8:D9) |     | =SUMA(F8:F9)    |  |
| 11 |                  |               |                 |                            |     |                 |  |
| 12 | Total salida     | =B10          |                 |                            |     |                 |  |
| 13 | Toata deseado    | =Input!H6/D10 |                 |                            |     |                 |  |
| 14 |                  | =B13/B12      |                 |                            |     |                 |  |
| 15 |                  |               |                 |                            |     |                 |  |

|    | A                | В           | С           | D      | E           | F           |  |
|----|------------------|-------------|-------------|--------|-------------|-------------|--|
| 1  |                  |             |             |        |             |             |  |
| 2  | Humedad relativa | 40          |             |        |             |             |  |
| 3  | P sat            | 3572.580683 |             |        |             |             |  |
| 4  | PT               | 101325      |             |        |             |             |  |
| 5  | PV               | 1429.032273 |             |        |             |             |  |
| 6  | HA               | 0.014618894 |             |        |             |             |  |
| 7  | 1.1              |             |             | PM     |             |             |  |
| 8  | Water            | 0.014618894 | 0.014408261 | 18.015 | 0.014618894 | 0.138957465 |  |
| 9  | Air              | 1           | 0.985591739 | 28.96  | 1           | 9.505333531 |  |
| 10 |                  | 1.014618894 |             | 28.802 |             | 9.644290996 |  |
| 11 |                  |             |             |        |             |             |  |
| 12 | Total salida     | 1.014618894 |             |        |             |             |  |
| 13 | Toata deseado    | 34.71944758 |             |        |             |             |  |
| 14 |                  | 34.21920071 |             |        |             |             |  |
|    |                  |             |             |        |             |             |  |

Por último en la hoja de salida (Output) se toman los valores de flujo por componente de la columna F de los cálculos:

| 4  | A                                              | В                | С         | D         | E         | F | G         | Н     | 1    | J          |
|----|------------------------------------------------|------------------|-----------|-----------|-----------|---|-----------|-------|------|------------|
| 2  | Do not modify structure or name of this sheet! |                  |           |           |           |   |           |       |      |            |
| 3  |                                                |                  |           |           |           |   |           |       |      |            |
| 4  | Conditions                                     | Stream 1         | Stream 2  | Stream 3  | Stream 4  |   | Parameter | Value | Unit | Annotation |
| 5  | Name                                           | Aire humedo      |           |           |           |   |           |       |      |            |
| 6  | Temperature [K]                                | =Input!B6        |           | =Input!D6 | =Input!E6 |   |           |       |      |            |
| 7  | Pressure [Pa]                                  | =Input!B7        | =Input!C7 | =Input!D7 | =Input!E7 |   |           |       |      |            |
| 8  |                                                |                  |           |           |           |   |           |       |      |            |
| 9  |                                                |                  |           |           |           |   |           |       |      |            |
| 10 |                                                |                  |           |           |           |   |           |       |      |            |
| 11 | Components                                     | [mol/s]          | [mol/s]   | [mol/s]   | [mol/s]   |   |           |       |      |            |
| 12 | Water                                          | =Calculations!F8 |           |           |           |   |           |       |      |            |
| 13 | Air                                            | =Calculations!F9 |           |           |           |   |           |       |      |            |
| 14 |                                                |                  |           |           |           |   |           |       |      |            |

| 1  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | В           | С           | D        | E        | F | G         | Н     | 1    | J          |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|----------|----------|---|-----------|-------|------|------------|--|
| 2  | Do not modify structure or name of this sheet!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1           |             |          |          |   |           |       |      |            |  |
| 3  | and the second se |             |             |          |          |   |           |       |      |            |  |
| 4  | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stream 1    | Stream 2    | Stream 3 | Stream 4 |   | Parameter | Value | Unit | Annotation |  |
| 5  | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aire humedo |             |          |          |   |           |       | -    |            |  |
| 6  | Temperature [K]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300.15      |             | 0        | 0        |   |           |       |      |            |  |
| 7  | Pressure [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101325      | 3572.580683 | 0        | 0        |   |           |       |      |            |  |
| 8  | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |             |          |          |   |           |       |      |            |  |
| 9  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |          |          |   |           |       |      |            |  |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |          |          |   |           |       |      |            |  |
| 11 | Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [mol/s]     | [mol/s]     | [mol/s]  | [mol/s]  |   |           |       |      |            |  |
| 12 | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.138957465 |             |          | -        |   |           |       |      |            |  |
| 13 | Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.505333531 |             |          |          |   |           |       |      |            |  |
| 14 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |          |          |   |           |       |      |            |  |
| 15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |          |          |   |           |       |      |            |  |

La planilla se cierra y guarda, para ejecutar la simulación se presiona F5. Del objeto spreadsheet se setean los valores deseados, HR=40 y flujo total =1000:

| Aire seco |                |           |        | 1                 |        |       |    |               | Aire humedo |                                  |
|-----------|----------------|-----------|--------|-------------------|--------|-------|----|---------------|-------------|----------------------------------|
| Aire seco | Temperature    | 27        | c      |                   |        |       |    |               | Aire húmedo | Temperature                      |
| Aire seco | Pressure       | 1         | atm    | -                 |        |       |    |               | Aire húmedo | Pressure                         |
| Aire seco | Mass Flow      | 1         | ka/h   |                   |        |       |    |               | Aire húmedo | Mass Flow                        |
| Aire seco | Molar Flow     | 0.0345304 | kmol/h | ⇒                 | _      |       |    | $\rightarrow$ | Aire húmedo | Molar Flow                       |
|           |                |           |        |                   | SPR    |       |    | In house a    | Aire húmedo | Molar Fraction (Mixture) / Water |
|           |                |           |        | AllEseco (S) (m)- | EXL-0  | 1     | -  | arenumeuo     | Aire húmedo | Molar Fraction (Mixture) / Air   |
| Au        | ×              |           |        | SPEC-01 Aux       |        |       |    |               | Aire húmedo | Mass Flow (Mixture) / Air        |
|           | v Temperatur   | e 2       | 7 C    |                   | 0      | -     |    | -             |             |                                  |
| Au        | ~   remperator |           |        |                   |        |       |    |               |             |                                  |
| Au        | x Pressure     | 0.0352586 | atm    |                   | Op use |       |    |               |             |                                  |
| Au        | x Pressure     | 0.0352586 | atm    |                   | EXL-01 | In_HR | 40 | 1             |             |                                  |

Para ejemplificar la practicidad haremos lo mismo para una corriente de 300 [kg/hr] de aire seco de 40 [ºC] para llevarlo a 60 % de humedad relativa. Repetimos los pasos anteriores para una nueva corriente de aire seco y otra auxiliar.



Prof. Titular.: Ph.D. Néstor Hugo Rodríguez Aux 1°: Ing. Mabel Andrea Dupuy 27 C 1 atm 1000 kg/h 34.7194 kmol/h

0.0144083

0.985592

990.988

| EVI 02 (Spreadsheet) |                                       | <u>е п.</u> |
|----------------------|---------------------------------------|-------------|
| General Info         |                                       | · * ·       |
| Object               | EXL-02                                |             |
| Status               | Calculated (29/02/2024 10:43:36 a.m.) |             |
| Linked to            |                                       |             |
| Connections          |                                       |             |
| Inlet Stream 1       | Aire seco2 🔹                          |             |
| Inlet Stream 2       | Aux2 🔻                                |             |
| Inlet Stream 3       | · · · · ·                             |             |
| Inlet Stream 4       |                                       |             |
|                      |                                       |             |
| Outlet Stream 1      | Aire humedo 2 💌 🗾                     |             |
| Outlet Stream 2      |                                       |             |
| Outlet Stream 3      |                                       |             |
| Outlet Stream 4      |                                       |             |
| Inlat Energy Stream  |                                       |             |
| mer Energy Stream    | · · · · ·                             |             |
| Spreadsheet          |                                       |             |
| File Path M:\grado\d | wsim\prueba-modelo.xlsx 💫 🗾           |             |
| Variables            |                                       |             |
| Input Output         |                                       |             |
| Variable             | Value Units                           |             |
| HR                   | 60 %                                  |             |
| Flujo Total          | 500 kg/hr                             |             |

Se agrega otra operación de usuario y se vincula a la misma spreadsheet:

Se ajusta los datos (HR=60 y flujo=300). Al presionar F5 se actualiza el cálculo:



| Aire humedo |                                  |           |         |
|-------------|----------------------------------|-----------|---------|
| Aire húmedo | Temperature                      | 27        | C       |
| Aire húmedo | Pressure                         | 1         | atm     |
| Aire húmedo | Mass Flow                        | 1000      | kg/h    |
| Aire húmedo | Molar Flow                       | 34.7194   | km ol/h |
| Aire húmedo | Molar Fraction (Mixture) / Water | 0.0144083 |         |
| Aire húmedo | Molar Fraction (Mixture) / Air   | 0.985592  |         |
| Aire húmedo | Mass Flow (Mixture) / Air        | 990.988   | kg/h    |

| Aire humedo 2 |                                  |           |        |  |
|---------------|----------------------------------|-----------|--------|--|
| Aire humedo 2 | Temperature                      | 40        | с      |  |
| Aire humedo 2 | Pressure                         | 1         | atm    |  |
| Aire humedo 2 | Mass Flow                        | 300       | kg/h   |  |
| Aire humedo 2 | Molar Flow                       | 10.5388   | kmol/h |  |
| Aire humedo 2 | Molar Fraction (Mixture) / Water | 0.0451142 |        |  |
| Aire humedo 2 | Molar Fraction (Mixture) / Air   | 0.954886  |        |  |
| Aire humedo 2 | Mass Flow (Mixture) / Air        | 291.435   | kg/h   |  |