UNIVERSIDAD TECNOLÓGICA NACIONAL – FACULTAD REGIONAL ROSARIO

Integración IV

Trabajo práctico Nº 2: Introducción al entorno de HYSYS

Generación de casos. Selección de componentes y paquetes fisicoquímicos. Personalización de sistemas de unidades. Generación de reportes.

1. Características generales del simulador

Con HYSYS, los ingenieros sólo necesitan desarrollar un simple modelo del proceso que puede ser usado desde diseños conceptuales, a diseños de mejoras, optimización de la producción y una mejor toma de decisiones. HYSYS está diseñado para que el usuario lo pueda configurar a su medida. Esto permite la interacción con otras aplicaciones para crear poderosos programas híbridos.

Algunas de las características más relevantes son:

- Ambiente gráfico de operación.
- Metodología de cálculo en estado estacionario: modular no secuencial. Los cálculos en el flowsheet son realizados automáticamente cuando el usuario aporta información. Los resultados de cualquier cálculo pasan automáticamente a otra corriente u operación que esté afectada por el cálculo, propagando los resultados a través del flowsheet. La información parcial (insuficiente para permitir un cálculo completo) también es dirigida bidireccionalmente a través del flowsheet.
- Metodología de cálculo en estado dinámico: cada operación unitaria individual contiene la información necesaria para calcular su respuesta dinámica, así como también integrar sus hold-ups, o en el caso de operaciones sin hold-ups, algebraicamente.
- Multi-Flowsheet: un número ilimitado de flowsheets pueden ser instalados en una simulación. La información de cualquier locación es accesible en cualquier momento.
- Sub-flowsheets y flowsheet templates: Cada flowsheet posee un paquete de fluidos (componentes, propiedades, reacciones, etc.). Un sub-flowsheet aparece como una operación multi-input/output y es resuelto automáticamente como cualquier otra operación. Los templates pueden ser construidos específicamente: paquetes de fluidos, operaciones, corrientes, especificaciones del proceso, etc., y guardados en disco.

- Los cálculos de equilibrio de fase pueden ser automáticamente realizados por el método apropiado para el flowsheet. Una vez que la composición y dos variables de estado (presión, temperatura, fracción de vapor o entalpía) son conocidas para una corriente, esta es automáticamente calculada. Los cálculos de las propiedades físicas son realizados automáticamente para cada fase.
- Base de datos con más de 1500 compuestos puros: Hidrocarburos, Aminas, Alcoholes, Cetonas, Aldehídos, Esteres, Acidos carboxílicos, Halógenos, Fenoles, Sólidos, etc.
- Métodos de cálculo termodinámico: Peng-Robindon, Soave-Redlich-Kwong, Esso Tabular, Chao Seader, etc.
- Línea de soporte vía telefónica, On-Line (e-mail y Web) y en planta.
- Cursos de entrenamiento para usuarios.
- Acceso a documentos vía Web.
- Licencias especiales para universidades.

Las operaciones unitarias y equipos disponibles son:

- E Separación: Separador de 2 fases, de 3 fases, Tanque
- Separadores de sólidos: Ciclón, Hidrociclón, Filtro rotativo de vacío, Filtro de bolsa, Cristalizador
- Destilación: Absorbedor, Absorbedor con rehervidor, Absorbedor con reflujo, Torre atmosférica de crudo, Extractor Líquido-Líquido, Fraccionador.
- Reactores: CSTR, PFR, Gibbs
- Transferencia de calor: Intercambiador de calor, Condensador, Evaporador.
- Distribución: Cañería, T, Mezclador
- Incremento de Presión: Bomba, Compresor, Válvula, Expander.
- Lógicas: Balance molar, Balance de masa, Balance de energía, Balance Gral., Adjust, Set, Controlador PID, Selector de señal, Función de transferencia.

Algunas herramientas de análisis con las que cuenta son:

- Case Study: Grabador de datos con el cual se pueden realizar varias simulaciones simultáneamente.
- Intercambio de calor: Análisis Pinch, curvas de calor.
- Equilibrio de fase: tablas de propiedades, Hidratos, T-XY, P-XY.
- Diseños de destilación: Mc Cabe Thiele, síntesis de destilación binaria, síntesis de destilación ternaria.

🗏 Cañerías: Dimensionamiento, caída de presión.

2. Arquitectura básica de HYSYS

Como se mencionó en el punto anterior, uno de los aspectos más útiles de HYSYS es su arquitectura Multi-Flowsheet. El concepto de Fowsheets y Sub-Flosheets es un método flexible e intuitivo que permite:

- Descomponer un proceso complejo en procesos más pequeños con componentes más concisos: Simular cada unidad del proceso en forma independiente del proceso completo, pero ligado a él, construyendo un sub-flowsheet con sus corrientes y operaciones unitarias accesorias.
- □ Usar paquetes termodinámicos independientes para cada flowsheet.

El concepto de *Medio Ambiente (Environment)*, permite acceder e ingresar información en una determinada área o "medio ambiente" del programa, mientras que las otras áreas están en modo hold ("esperando") hasta que se finalice la tarea en el área de interés. Hay 5 Environments:

- Basis (se crean, definen y modifican los Paquetes de Fluidos a ser utilizados –incluyen, como mínimo, el paquete de propiedades y los componentes)
- Oil Characterization (se caracterizan cortes de petróleo)
- Main Flowsheet (se define mayoritariamente la topología del flowsheet principal)
- Sub-Flowsheet (se define la topología del sub-flowsheet)
- Column (se define la topología de una particular Columna Sub-Flowsheet)

Entre las herramientas disponibles en HYSYS podemos mencionar:

- Capacidad para realizar cálculos interactivos y acceso instantáneo de la información.
- Inteligencia incorporada al programa que le permite conocer cuando la información disponible es suficiente para efectuar un cálculo y corregir los cálculos flash en forma automática.
- Operación modular: Todas las operaciones unitarias y/o corrientes pueden realizar todos los cálculos siempre que se especifique la información mínima necesaria en cada caso o la misma se transmita a través de las corrientes ligadas. La información, completa o parcial, se transmite en forma bi-direccional.
- Algoritmos de solución No Secuenciales. Ellos operan en forma independiente del orden en que se construye el flowsheet.

HYSYS cuenta con Elementos de Interafase Primarios, los cuales son formas alternativas para acceder e ingresar información del proceso. Estos son:

- El Diagrama de Fujo de Proceso (The Process Flow Diagram -PFD-)
- Workbook.
- Property View.

2.1 Medio Ambiente Básico

Es la primer interface con la que nos encontramos al iniciar un nuevo caso en HYSYS. Las principales tareas que se realizan dentro del mismo son:

- Creación de lista de componentes
- E Selección de paquetes de propiedades asociados a cada lista (base)
- E Selección de reacciones químicas (tipo de cinética y parámetros de las misma)
- Conformación del corte de un crudo a partir de sus propiedades
- Inclusión de componentes hipotéticos ya seas estos fluidos o sólidos

2.1.1 Creación de un nuevo caso e ingreso de componentes

Para comenzar a crear un caso de HYSYS se debe presionar el botón (\Box) "*New Case*", a continuación aparece la ventana "*Simulation Basis Manager*".

Para seleccionar los componentes, en la pestaña "*Components*" se debe presionar "*Add*", luego de lo cual aparece una nueva ventana que permite buscar componentes dentro de una librería de compuestos ya almacenados ("*Tradicional*", ya contenidos en HYSYS, "*Hipothetical*", creados y definidos por el usuario y "*Other*".

4 Simulation B	asis Manag	er					
Component Lists Master Compon	ent List	View Add Delete Copy Import Export Refresh					
Components	Fluid Pkgs	Hypotheticals	Oil Manager	Reactions	Component Maps	UserProperty	,
						Enter Si <u>m</u> ulatio	on Environment

Dentro de la opción "Tradicional" se puede observar, desplegada en la parte derecha de la pantalla, la tabla "*Components Available in the Component Library*" que contiene un listado de los compuestos que posee almacenado HYSYS en su base de datos.

La búsqueda de los compuestos se puede realizar según varios criterios (por ejemplo nombre o fórmula) colocando parte de la expresión en la casilla "*Match*". Luego deben ser agregados al listado de componentes presionando el botón "*Add Pure*" o realizando doble clic sobre el compuesto.

Si se desea reducir el espectro sobre el cual se realiza la búsqueda, se puede utilizar el botón *"View Filtres"*, el cual permite seleccionar una familia de compuestos (función química) o seleccionar elementos que sean compatibles con la utilización de cierto paquete de propiedades.

En la parte inferior de la ventana aparece la casilla "*Name*", la cual permite el ingreso de un nuevo nombre a la serie de componentes seleccionados. Por defecto ya posee un nombre asignado.

Una vez que se hayan seleccionado todos los componentes cerrar la ventana para regresar a la ventana original del "*Simulation Basis Manager*".

NOTA:

La base de datos de compuestos incorporada en HYSYS es muy grande, pero como es un simulador muy orientado a la industria petroquímica, es difícil encontrar componentes de otro tipo de industrias, como por ejemplo los sulfatos, óxidos y demás componentes inorgánicos en solución. Las últimas versiones de HYSYS incluyen el paquete de electrolitos, lo que permite incluir tales sustancias y por lo tanto, variar las propiedades coligativas de la mezcla.

También es posible incluir componentes que no estén en la base de datos, ingresando algunos de sus parámetros característicos.

2.1.2 Selección de paquetes de propiedades asociados a cada lista

En la pestaña "*Fluid Pkgs*", presionar "*Add*" para que se despliegue una nueva ventana, la cual permitirá seleccionar un paquete de propiedades de los fluidos acorde a las características del sistema formado por los componentes seleccionados en el paso anterior.

Este paso es muy importante, ya que definirá la base de la simulación. Si se tiene una buena base, se tendrá una buena simulación, pero si se introduce un error desde el principio, éste se agravará con el desarrollo de la simulación.

👗 Fluid Package: Basis-1	🛛 🔀
Property Package Selection (none> Amine Pkg Antoine ASME Steam Braun K10 Chao Seader Chien Null Esso Tabular Extended NRTL GCEOS General NRTL Component List Selection	Permite filtrar por tipo de paquetes de propiedades Si existen reacciones químicas se deben especificar aquí
Component List - 1 View	COMThermo Regression Export
Set Up Parameters Binary Coeffs StabTest Phase Orden Delete Name Basis-1 Property Pkg	er Rxns Tabular Notes Antoine Edit Properties

Paquetes fisicoquímicos por su tipo

Fluid Package: Basis	-1					
Amine Pkg Amine Pkg ASME Steam Infochem Multiflash MBWR NBS Steam Neotec Black Oil OLI_Electrolyte	Property Package Filter C All Types EDSs Activity Models C Chao Seader Models Vapour Press Models Miscellaneous Types					
' Component List Selection		[Advanced Thermody	namics	Import	
Component List - 1 View View						
Set Up Parameters	Binary Coeffs StabTest	Phase Order	Rxns Tabular	Notes		
Delete <u>N</u> ame	Basis-1 Property	Pkg	Antoine		Edit Properties	

Coeff Matrig To View: Aij Bij Alphaij / Cij Methanol LinoleicAcid 1C16oicAcid OleicAcid Glycerol H20 Methanol	Activity Model I	nteraction Par	ameters					-Coeff Estimation
Methanol LinoleicAcid 1C16oicAcid OleicAcid Glycerol H20 Methanol	Coeff Matri <u>x</u> To	o View:	💽 Aij	O Bij	O Alp	ihaij / Cij		 UNIFAC VLE
Methanol LinoleicAcid 1C16oicAcid OleicAcid Glycerol H2O Fill Fill Glycerol H2O Fill Methanol Methanol Image: Comparison of the								C UNIFAC LLE
Methanol ···· -464.888 -495.160 -476.333 -462.511 610.403 LinoleicAcid 2286.751 ···· -45.181 34.486 3758.296 9410.944 Individual Pa 1C16oicAcid 1874.352 71.431 ···· 67.626 2913.145 9408.344 Iunknowns Or OleicAcid 2166.570 -26.703 -56.624 ···· 3615.666 9403.667 Iunknowns Or Glycerol 353.600 2213.404 1939.955 2199.240 ···· -901.328 ALL Binaries H2O -48.673 1978.602 1976.752 1978.602 490.664 ···· Reset Params		Methanol	LinoleicAcid	1C16oicAcid	OleicAcid	Glycerol	H20	C Immiscible
LinoleicAcid 2286.751 -45.181 34.486 3758.296 9410.944 Individual Pa 1C16oicAcid 1874.352 71.431 67.626 2913.145 9408.344 IUnknowns Or OleicAcid 2166.570 -26.703 -56.624 3615.646 9403.667 Glycerol 353.600 2213.404 1939.955 2199.240 -901.328 ALL Binaries H2O -48.673 1978.602 1976.752 1978.602 490.664 ALL Binaries Reset Parama	Methanol		-464.888	-495.160	-476.333	-462.511	610.403	
1016oicAcid 1874.352 71.431 67.626 2913.145 9408.344 Image: Constraint of the constraint	LinoleicAcid	2286.751		-45.181	34.486	3758.296	9410.944	In <u>d</u> ividual Pair
OleicAcid 2166.570 -26.703 -56.624 3615.646 9403.667 Item control of the sector	1C16oicAcid	1874.352	71.431		67.626	2913.145	9408.344	C University Only
Glycerol 353.600 2213.404 1939.955 2199.240 -901.328 ALL Binaries H2O -48.673 1978.602 1976.752 1978.602 490.664 Provide the second seco	OleicAcid	2166.570	-26.703	-56.624		3615.646	9403.667	
H2O -48.673 1978.602 1976.752 1978.602 490.664 Reset Parama	Glycerol	353.600	2213.404	1939.955	2199.240		-901.328	ALL Binaries
Reset Parama	H20	-48.673	1978.602	1976.752	1978.602	490.664		
								Reset Params.
R = 1.98721 cal/gmol								R = 1.98721 cal/gmol K

En algunos casos puede ser necesario definir los coeficientes binarios de los pares de los diversos componentes, parámetros para las reacciones químicas, etc., antes de cerrar la ventana *"Fluid Pakage"*.

Cabe destacar que en ésta etapa deben definirse los modelos para el cálculo de las entalpías y demás propiedades.

2.1.3 Selección de reacciones químicas

De existir reacciones químicas en alguna etapa del proceso, deben especificarse en este espacio.

Este tema se ampliará al abordar sistemas con Reactores.

Current Reaction Sets	Available React Global Rxn Set	ion <u>S</u> ets		
	<pre> < Add Set</pre>	F	Return to the Simulation Basis Manager to Build Reactions or Reaction Sets.	
Simulation Basis Manager				
Rxn Components Reactio	NS View Rxn	Reaction <u>S</u> ets Global Rxn Set		
LinoleicAcid 1C16oicAcid	Add <u>B</u> xn		Add Set	A Postion
OleicAcid Glycerol	Delete Rxn		Delete Set	Conversion
H2O Benzene	Copy Rx <u>n</u>	Assoc. Fluid Pkgs	Copy Set	Equilibrium Heterogeneous Catalytic
			Import Set	Simple Rate
			Export Set	
Add Comps			Add to FP	Add <u>R</u> eaction
Components Fluid Pkgs Hypo	theticals Oil Manager Reactions	Component Maps	UserProperty	
		_		

2.2 Medio Ambiente de simulación

Aquí se realiza el armado del flowsheet a partir de los objetos básicos de la paleta de operaciones unitarias. *Simulation Environment* es la pantalla principal de HYSYS donde realizaremos las simulaciones. En este medio la simulación se hace muy visual y fácil de llevar. Hay otro medio de simulación en HYSYS que veremos más adelante: el *Workbook*

NoName - HYSYS 3.2		_ 2 🛛
File Edit Simulation Flowsheet PFD Tools Window Help		
D 🖆 🖬 🕂 🛄 🛤 隆 💳 🌣 🚧 🐨 🌚 🐇 🖊	Environment: Case Mode: Stead	se (Main) 🛛 🗴
f: PFD - Case (Main)		
H M 🗈 H 🕅 🔎 A 🔊 🖁	🇐 Default Co	i o ei
		L, T. U.
		┙ <u>┉</u> ┪║╻ <u>╋</u>
		┍╴╼╴╺╸
	2	
	a a a a a a a a a a a a a a a a a a a	
	1	
	1	┝╌╞╴ᡛ᠊ᡃᡃᢪ
) & (+
	-6	.
	1	
		r 1 🖍
PFD 1		** ** **
		<u>, A</u> ∃. <u>,</u> ,

Diseño del Diagrama de Flujo (Process Flow Design – PFD)

La **Paleta de Objetos** se usa para seleccionar el equipo o el tipo de corriente que queremos introducir en el sistema de simulación

La función "F4" permite visualizar u ocultar la paleta de operaciones unitarias

La paleta se puede dividir en cuatro secciones:

- 💻 Corrientes: Materia (📃 Energía (📃
- Equipos de separación de fases, presión, transferencia de calor y reactores,
- Equipos de transferencia de masa (destilación, absorción...)
- Operaciones lógicas

2.2.1 Ingreso de corrientes desde la paleta de objetos

Seleccionar mediante un click en la paleta de objetos la flecha azul o roja, según se desee incorporar una corriente de materia o energía, y volver a clickear en el PFD. Se puede visualizar la corriente representada mediante una flecha celeste.

Para dar especificaciones a la corriente debemos hacer doble click en la corriente y aparecerá el visor de propiedades de las corrientes. Se puede cambiar el nombre de la corriente simplemente escribiendo un nombre nuevo en la caja *Stream Name*.

La barra amarilla en la parte inferior indica la falta de información para definir completamente la corriente.

En HYSYS se puede seleccionar la base para definir las composiciones. Dentro de la opción *Compositions* haciendo clic en el botón *Basis*, aparece la caja de diálogo que permite elegir una base entre las diferentes opciones.

Etanol				
Worksheet Conditions Composition K Value User Variables Notes Cost Parameters	Ethanol Chloroform Toluene H2O Oxygen Nitrogen	Mole Fractions	Market Stream: Etanol	X
	Total 0.00	0000	Compositional Basis Mole Fractions Mass Fractions Liquid Volume Fractions	
Worksheet Att	achments Dynamics Unknown Compositions		<u>Mole Flows</u> <u>Mass Flows</u>	
Delete	Define from Other Stream		C Liguid Volume Flows	

2.2.2 Ingreso de corrientes desde el workbook

Para abrir o desplegar el *Workbook*, presione el botón de Workbook sobre la barra de botones. Luego ingrese el nombre de la corriente en la celda ***New***.

 Workbook - Case (Main))			
Name	Etanol	** New **		
Vapour Fraction	<empty></empty>			
Temperature [C]	<empty></empty>			
Pressure [kPa]	<empty></empty>			
Molar Flow [kgmole/h]	5557			
Mass Flow [kg/h]	1.003e+005			
Std Ideal Liq Vol Flow [m3/h]	100.6			
Heat Flow [kJ/h]	<empty></empty>			
Molar Enthalpy [kJ/kgmole]	<empty></empty>			
				-
Streams Unit Ops				
ProductBlock_Etanol			Fluid Pkg All	•
FeederBlock_Etanol			 Include Sub-Flowsheets Show Name Only 	
Horizontal Matrix			Number of Hidden Objects:	0

Para especificar la composición hacer doble click en <empty> de la fila Mass Flow

💐 Input Composi	tion for Stream: toluend	
Ethanol Chloroform Toluene H2O Oxygen Nitrogen	MassFraction 1.5000 1.4000e+02 0.0000 1.0000e+05 0.0000 0.000 0.000 0.0000 0.0000 000 0.0000 0	Composition Basis ○ Mole Fractions ○ Mass Fractions ○ Liq Volume Fractions ○ Mole Flows ○ Mass Flows ○ Lig Volume Flows Composition Controls Erase Normalize Cancel
Total	1.0014e+05	ОК

Al pulsar el botón OK se regresa a la ventana del PFD donde se ha incorporado la nueva corriente.

2.2.3 Ingreso de corrientes desde la barra de menú

Pulsando <**F11**> cuando estamos en modo simulación, aparece el visor de propiedades. En la celda *Stream Name* colocamos el nombre de la corriente.

Aire							
Work sheet Conditions Properties Composition K Value User Variables Notes Cost Parameters	Stream Name Vapour / Phase Fraction Temperature [C] Pressure [KPa] Molar Flow (kgmole/h] Mass Flow (kg/h] Std Ideal Liq Vol Flow (m3/h) Molar Enthalpy [kJ/kgmole] Molar Enthalpy [kJ/kgmole-C] Heat Flow (kJ/h] Liq Vol Flow @Std Cond [m3/h] Fluid Package	Aire (empty) Clase 1 Adri					
Worksheet Att	Worksheet Attachments Dynamics						
	Unknown Compositions						
Delete	Define from Other Stream	← →					

Seleccionamos la opción *Compositions* donde se puede cambiar de base de unidades para las corrientes seleccionando *Basis*, o seleccionando directamente *Edit*.

2.3 Selección del Sistema de Unidades de trabajo

El sistema de unidades predeterminado en HYSYS es el SI, pero es posible cambiar el sistema de unidades usado para exteriorizar las diferentes variables.

Para esto del menú "*Tools*", seleccione "*Preferentes*". Luego cambie a la pestaña "variables", y a continuación vaya a la opción dentro de "*Variables*" que se llama "*Units*"; aquí se puede seleccionar el sistema deseado.

Session Prefere	nces (HYSYS.PRF)				_ 🗆 🔀
Variables Units Formats	Available Unit Sets NewUser1ea11 SI si mod tesis Unit Set Na <u>m</u> e SI				Clone Delete View <u>U</u> sers
	Display Units Vapour Fraction Temperature Pressure Flow Mass Flow	Unit D	Unitless C kPa kgmole/h kg/h		<u>V</u> iew A <u>d</u> d Delete
Simulation Varia	ables Deports Files	Resources	Extensions	0il Input	Tray Sizing
Sa <u>v</u> e Preference S	et			Lo <u>a</u> d Pre	ference Set

Una alternativa es crear uno nuevo con el conjunto de unidades adecuadas para mostrar las variables. Para ello seleccionar la pestaña "*Simulation*", luego presionar "*Tool Tips*" y a continuación seleccionar "*User Defined Unit Set*".

Č,	역 Session Preferences (HYSYS.PRF) 📃 🗖 🔀						
	Simulation Options	Show Tool Tips Default Unit Set Default Unit Set Value in St Units Value in St Units Value in St Units Value in St Units Value in St Units					
	Errors Desktop	User Defined Unit Set Unit Set Unit Set 1 Unit Set 2	_ 1				
\langle	Tool Tips	Vapour Fraction Unitless Unitless Temperature C F					
	Dynamics Performance	Fressure Dar psia Flow kgmole/h Ibmole/hr -					
	Licensing	Show PFD Fly By SteadyState C Dynami	c				
	RTIServer Column		_				
	Status Window Trace Window	Unit Operation					
		<u>R</u> eset to default selections					
~	Simulation Var	iables Reports Files Resources Extensions Oil Input Tray Sizing	Γ				
	Save Preference	Set Load Preference Set					

Pasar a la pestaña "Variables", y al seleccionar "*Units*" aparecen los sistemas de unidades (Por ejemplo, la unidad por defecto para la presión es kPa. Y se desea cambiar a atm.). Para crear el nuevo conjunto presionar el botón "*Clone*". "*NewUser*" aparecerá resaltado en azul en "*Unit Set Name*" (este es el nombre que asigna por defecto HYSYS al nuevo set de unidades); para cambiarlo se debe ingresar el nombre a asignar al set de unidades en esta casilla y al hacer Enter se actualiza el nombre en el campo "*Available Unit Sets*". A continuación se pueden modificar las unidades asignadas a cada variable.

Por ejemplo al seleccionar la celda "*Pressure*" y al hacer click en kPa se abre una lista desplegable de las unidades disponibles, de la cual se selecciona atm, haciendo clic.

Una vez definido el nuevo conjunto de unidades se debe presionar el botón "*Close*" y se regresa al entorno de simulación.

Para guardar el sistema de unidades definido presionar "Save Preference Set".

Para cargar este sistema en un trabajo cualquiera "Load Unit Set".

a Session Prefere	nces (HYSYS.PRF)		_ 🗆 🔀
Variables Units Formats	Available Unit Sets eg EuroSI Field NewUser Unit Set Na <u>m</u> e NewL	 ■ 	Clone Delete
	Display Units Vapour Fraction Temperature Pressure Flow Mass Flow	Unit Unitless C KPa kgmole/h kg/h	<u>V</u> iew A <u>d</u> d Delete
Simulation Vari	ables Reports Files F	Resources Extensions Oil In	put Tray Sizing

Luego cierre esta ventana haciendo clic en 🔯 para volver a la simulación.

2.4 Cálculos Instantáneos

Como se mencionó, HYSYS puede efectuar 5 tipos de cálculos instantáneos sobre las corrientes:

- 🗏 P-T
- 🗏 Vf-P
- 🗏 Vf-T
- 🗏 P-Entalpía Molar
- 🗏 T-Entalpía Molar.

Una vez que la composición de la corriente y dos parámetros cualesquiera: temperatura, presión, fracción de vapor o la entalpía molar son conocidas, HYSYS realiza un cálculo instantáneo en la corriente, calculando los otros dos parámetros.

Con las capacidades instantáneas de HYSYS, se calcula el punto de rocío y punto de burbuja.

Especificando una fracción de vapor de 1 y la presión o la temperatura de la corriente, HYSYS calculará la Temperatura o la Presión de Rocío.

Para calcular la Temperatura o la Presión de Burbuja, debe introducirse una fracción de vapor de 0 y cualquier presión o cualquiera temperatura.

Ejercicio propuesto:

Dada de la corriente de gas cuyo Flujo es de 100 kg/h, y de composición:

Componente	Fracción molar
N2	0.0025
H2S	0.0237
CO2	0.0048
C1	0.68
C2	0.1920
C3	0.0710
i-C4	0.0115
n-C4	0.0085
i-C5	0.0036
n-C5	0.0021
C6	0.0003
H2O	0.0000
C7+	0.0000

Realice el cálculo en el flash para esta corriente, aplicando el paquete termodinámico

UNIQUAC. Ajuste una presión de 7500 kPa y una temperatura de 10° C. ¿Cuál es la fracción de vapor?

Realice el cálculo de punto de rocío a esta corriente. Fije una presión de 7500 kPa. ¿Cual es la temperatura de rocío?

3. Simulación de bombeo de agua

Se propone calcular la potencia necesaria para bombear un flujo de 0,551 [kgmol/h] de agua que se encuentra a una temperatura de 253 [°K] desde una presión de 101 [KPa] hasta 202 [KPa] empleando los siguientes paquetes fisicoquímicos:

- a) NRTL
- b) Wilson

- c) UNIQUAC
- d) SRK

Considerar la fase vapor como ideal

Armado del caso:

Ejecutar el programa Hysys® e iniciar un nuevo caso desde *File-New-Case* (o Ctrt N) o bien haciendo clic en el icono:

		-				
nt List	⊻iew					
	Add					
	Delete	[
1	Сору	j .				
1	Import					
1	Egport	Í.				
	<u>R</u> efresh	1				
D. (10)	Hupotheticals	0il Manager	Reactions	Component Maps	UserProperty	
	rit List - - -	nt List View Add Delete Copy Import Export <u>R</u> efresh	nt Listiew Add 	rit List View Add Delete Copy Import Export Export	nt List View Add Delete Copy Import Export Eetresh	nt List View Add Delete Copy Import Export Befresh

Se despliega la siguiente ventana (Administrador Básico de Simulación):

Desde la etiqueta "*Components*", hacer clic en "*Add*" (alt+A) para agregar una lista de componentes. Se despliega la ventana:

Add Component	Selected Components		Components Avail	able in the Component Library		
Components Traditional			Match	G. E.d.Name / Summer	View Filters	
Hypothetical			Methane	(* Pull Name 7 Synonym	CHA	
Other		<add pure<="" td=""><td>Ethane Propane</td><td>C C</td><td>C2H6 C3H8</td><td></td></add>	Ethane Propane	C C	C2H6 C3H8	
		<-Substitute->	i-Butane n-Butane	iC4 n-C4	C4H10 C4H10	
		The second secon	i-Pentane n-Pentane	iC5 nC5	C5H12 C5H12	
		fienove-)	n-Hexane n-Heptane	C6 C7	C6H14 C7H16	
		Sort List	n-Octane n-Nonane	C9	C8H18 C9H20	
		View Component	n-Decane n-C11	C10 C11	C11H24	
		Their monormer	-C12	C12 C13	C13H28	~
			Show Synony	ms 🗌 Cluster		
Selected Compo	nent by Type					_

Desde el cuadro de texto *Match* escribir el compuesto por su nombre en ingles, el nombre simplificado o su fórmula (ver qué casilla de opciones esta activada: *"Sim name"*- *"Full name"* o

"Formula"). En nuestro caso *"water"* debería resaltar un solo componente (escribiendo H_2O aparecen todos los componentes que tienen 2 hidrógenos y un oxígeno aparte de otros elementos y no solo el agua).

Add Component	Selected Components	_	Components Availa	sole in the Component Library	
Traditional			Match wat	er	View Filters
Electrolyte			C Sim Name	Full Name / Synonym	C Formula
Other		<add pure<="" td=""><td>H20</td><td>Water</td><td>H20</td></add>	H20	Water	H20
		<-Substitute->			
		Remove->			
		Sort List			
		View Component			
			Show Synonye	ns 🕅 Cluster	
Selected Compo	nent by Type				

Seleccionar haciendo clic en " *Add Pure*" o mediante la tecla *ENTER*>

Add Component	H20		Match water	e en me component Lonay	View Educe
Traditional			C Cir Name	G. E.d.Nama / Commun	C Family
- Hypothetical - Other	C-Add Pu C-Substitut Remove Soft List	C-Add Pure C-Substitute-> Remove> Soft List	In the second se		
		Ten contonen	Show Synonym	ic 🦵 Cluster	

Cerramos la ventana anterior y volvemos al *Simulation Basis Manager*. Se ve que aparece la lista de componentes recién creada:

Simulation Basis Mana	iger					
Master Component List	1 Marine 1	1				
Component List - 1	<u></u> iew					
	Add					
	Delete					
	Сору	Ĩ				
		1				
	Import					
	Egport	1				
	Befresh	1				
Components Fluid Pkg	Hypotheticals	0il Manager	Reactions	Component Map	s UserProperty	,
					Enter Sinudati	on Environment

Se selecciona la nueva lista (que se mostrará resaltada) y se ingresa a la pestaña "*Fluid Pkgs*": Paquete de Fluidos. El mismo contiene toda la información necesaria para los cálculos físicos de las propiedades de los componentes.

rent Fluid Packages		Flowsheet - Fluid Pkg Asso	ciations	
	⊻iew	Flowsheet	Fluid Pkg To Use	
	<u>A</u> dd	Case (Main)	(empty)	
	Delete			
	Copy			
	[mport			
	Esport	Default Fluid Pkg		-
Components Fluid Pkas H	upotheticals Di Manager	Beactions Component Ma	os UserProperty	

Se hace clic en "Add" para agregar un nuevo paquete:

🎍 Fluid Package: Basis-1		
Property Package Selection Amine Pkg Antoine ASME Steam Braun K10 CEOS/A^E Mixing Rules Chao Seader Chien Null Clean Fuels Pkg Esso Tabular Extended NRTL	Property Package Filter All Types EDSs Activity Models Chao Seader Models Vapour Press Models Miscellaneous Types	
Component List Selection	View View	Import Export
Set Up Parameters Bin Delete <u>N</u> ame Bas	ary Coeffs StabTest Phase Order Rxns Tabular Notes	

Si el botón de opciones esta seleccionado en "*All Types*" se despliegan todos, de lo contrario solo los que entren en la categoría seleccionada, ejemplo "*EOSs*" (basados en ecuaciones de estado), "*Activity Models*" (para los basados en modelos de actividad), etc. Para el punto "a" del problema seleccionamos "NRTL" y cerramos la ventana. Volvemos a la ventana básica:

		Tionshoot Thad Ting Asso	caduolla	
SIS-I NU: I PP: NHIL-IOSAI	View	Flowsheet	Fluid Pkg To Use	
	Add	Uase (Main)	Basis-1	-
	Delete			
	Conu			
	Cobz	-		
	Import			
	Export			
	e Diversion	Default Fluid Pkg	Basis-1	-
	· Low	- · · · · ·		

Como se mencionó, es posible cambiar el sistema de unidades usado desde el menú *Tools* \rightarrow *Preferences*. Ingresando a la etiqueta "*Variables*" se selecciona la opción "*Units*", y dentro de sus campos se encuentran los distintos sets de unidades disponibles. Para agregar un sistema de unidades diferente a los que están disponibles, se debe seguir el camino: *Tools* \rightarrow *Preferences* \rightarrow *Simulation* \rightarrow *Tool Tips* \rightarrow *User Defined Unit Set* \rightarrow *Variables* \rightarrow *Clone*.

Haciendo clic en el botón "Enter Simulation Environment." abandonamos el entorno básico y vamos al de simulación.

Se aprecian dos ventanas, la de Diseño del Diagrama de Flujo (PFD) y la Paleta de Objetos.

Para agregar equipos se hace un clic sobre el icono del elemento de interés representado en la paleta de objetos (como ayuda, una vez en foco sobre un icono, aparece su nombre bajo el cursor del mouse), y luego un clic sobre la ventana de diseño. Si no es visible la paleta de objetos presionar la tecla de función "F4".

Comenzamos introduciendo dos corrientes materiales (flecha azul _____) y una de energía

(flecha roja 📂)

Finalmente se agrega una bomba centrífuga (🐸)

Haciendo doble clic en la corriente 1 le especificamos el nombre, composición, presión, temperatura y flujo molar. A la corriente 2 solo se le especifica la presión de descarga y se le cambia el nombre, según desee indentificarla el ususario.

Finalmente haciendo doble clic en la bomba centrífuga, se conectan las corrientes utilizando la pestaña "*Design*" \rightarrow "*Connections*". El flowsheet debería quedar de la siguiente manera (salvo el nombre de las corrientes y/o equipos que depende de la especificación seleccionada por el usuario):

Una vez especificados los datos necesarios (los que cierran los grados de libertad del sistema) el simulador está en condiciones de obtener la solución de los modelos respectivos y por lo tanto, el cálculo de todos los parámetros para cada corriente y/o equipos en el diagrama de flujo.

Haciendo clic en cualquiera de las corrientes se pueden ver todos los valores que la definen calculados. La potencia requerida por la bomba se puede observar haciendo clic en "Q-100", que es la corriente de energía asociada a la bomba. Otra forma cómoda es ver todas las corrientes y

equipos en forma tabular desde "*Workbook*" cuyo botón esta en la barra de superior: Anotar en una tabla la potencia calculada en las unidades [KCal/h] y repetir todo lo anterior para los otros paquetes de estimación de propiedades fisicoquímicas. Para ello volver a "*Basis Environmental*" haciendo clic en el botón de la barra superior:

Una vez en *Basis* y resaltado el paquete actual se puede modificar haciendo clic en el botón *"View"*. Una vez seleccionado el nuevo modelo se vuelve al medio ambiente de trabajo mediante *"Enter Simulation Environment"* desde donde se pueden observar los nuevos valores calculados.

¿Qué podemos concluir? ¿Hay diferencias en los resultados obtenidos con los diferentes modelos de estimación de propiedades fisicoquímicas? ¿Cuál refleja mejor la realidad según su criterio?

3.1 Generación de reportes

Para generar un reporte general del caso anterior hacer un clic sobre el botón *Tools* \rightarrow *Reports*.

Tools	Window	Help		
<u>™</u> ⊻ ≪∿	<u>V</u> orkbooks	. Ctrl+W	S Pepert Manager	
10 , E S	'nDs Summarijes	Ctrl+P	Available Reports	Printing
iT u	<u>J</u> tilities	Ctrl+U	Cr <u>e</u> ate	Print
	<u>Peports</u> Patabook Face Plates	Ctrl+R Ctrl+D Ctrl+F	Edjt Dejete	<mark>│ Text to <u>F</u>ile</mark> │ Delimited Pre <u>v</u> iew
)ynamics As: Iontrol Mana Recycle Assis	sistant Ctrl+Y ager stant		Format/Layout Print <u>S</u> etup
C S S N)ynamic <u>P</u> rof in <u>a</u> pshot Ma icript Manag <u>4</u> acro Langu	iling Tool nager er age Editor		
	<u>l</u> ase Security Ic <u>h</u> o ID	y		

Hacer clic en Create, y dar un nombre al reporte.

Luego presionar el botón Insert datasheet.

Nepon Dunder	Reporte Ejercicio a		ا لکار کا
Report <u>N</u> ame Reporte		Size: O Pages	
Report Datasheels			Printing
			<u>P</u> iint
			Text to File
			🔽 Delimited
			Pre <u>v</u> jew
	_		Format/Layout.
Insert Datasheet	Edit Datasheet	Bemove Datasheet	Print Setup

Seleccionar *<Workbook-Main>* y luego "*Add*" al reporte.

Select Datablocks for Datasheet			
Source for Datablocks Image: Specific Object by Name Pick All Objects Elowsheets Objects Case (Main) KWorkbook • Main> entrada Q-100 salida P-100 FeederBlock_entrada Main Properties ProductBlock_salida	s of a Given Type Filter All Streams UnitOps Logicals Utilities Reactions Other Custom Setup Custom	Available Datablocks	Add Cancel Select <u>A</u> ll Invert Selection d in the Datasheet.

Una vista preliminar del informe se puede observar presionando el botón "Preview" en la ventana "Report Buider":

🎽 Report Builder - Reporte	- • •
Report Name Reporte Size: 1 Page	
Report Datasheets	Printing <u>Print</u> Text to <u>File</u> Ø Delimited Pre⊻iew
Insert Datasheet Edit Datasheet <u>R</u> emove Datasheet 🔊	Format/Layout Print <u>S</u> etup

Vista del informe:

_											
1					Case Name: C:\Program Files\Hyprotech\HYSYS 3.2\NoName.hsc						
3	HYPROTECH	lberta Ur		Unit Set:	mod						
4 5	LIFECYCLE INNOVATION			Date/Time:	Thu May 02 21:25:42 201	u May 02 21:25:42 2013					
6 7	Workbook: Case (Main)										
9 10	2			Material Streams			Fluid Pkg:	All			
11	Name		entrada	Sa	alida						
12	Vapour Fraction		0.0000		0.0000						
13	Temperature	(K)	253.0	*	253.0						
14	Pressure	(atm)	1.000	*	2.000 *						
15	Molar Flow	(kgmole/h)	0.5510	*	0.5510						
16	Mass Flow	(kg/h)	9.926		9.926						
17	Liquid Volume Flow	(m3/h)	9.946e-003		9.946e-003						
18	Heat Flow	(kcal/h)	-3.797e+004		-3.797e+004						
19 20	Compositions Fluid Pkg: All										
21	Name		entrada	Sa	alida						
22	Comp Mole Frac (H2O)		1.0000	*	1.0000						
23 24	Energy Streams Fluid Pkg: All										
25	Name		Q-100								
26	Heat Flow	(kcal/h)	0.3081	0.3081							
27 28	Unit Ops										
29	Operation Name	Ope	ration Type		Feeds	Products	Products		Calc. Level		
30 31	P-100	Pump		entrada 2-100	ada salida			No	500.0 *		